

The Illinois-Columbia System in the CoNLL-2014 Shared Task

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, Dan Roth, and Nizar Habash

06/26/2014

The CoNLL-2014 Shared Task

- Extends last year's shared task
- CoNLL-2013 competition five error types (account for about 50% of errors in the CoNLL data)
 - Articles
 - Prepositions
 - 🗆 Noun number
 - Verb agreement
 - 🗆 Verb form
- CoNLL-2014 evaluates with respect to all errors (28 error types)
- Our system ranked first on after-revisions data and second on before-revisions data

System Design and Goals

- Build a robust system that can make use of
 - Machine-learning methods
 - Cheap linguistic resources
 - Native English data (the Google Web 5-gram corpus)
 - Knowledge of the error patterns of the learners
 - Annotated learner data (training data of the shared task)
 - Inexpensive but reliable linguistic knowledge

The Illinois-Columbia System: Overview

- Based on the Illinois system that ranked first in the CoNLL-2013 shared task
- Extends the Illinois system in several respects:
 - Targets additional error types
 - Uses model combination for robustness
 - Uses joint inference to eliminate inconsistent predictions

The Illinois-Columbia System

- Implements ideas proposed in our prior work in this area:
 - Adaptation, i.e. developing models that are aware of error patterns, using scarce annotation): NAACL'10, ACL'11, BEA'12
 - Especially important when training on native English data
 - Can also be used when training on learner data
 - □ Algorithmic perspective: ACL'11
 - Linguistically-inspired approach to correcting open-class errors: EACL'2014
 - □ Joint inference: EMNLP'13
 - To eliminate inconsistent predictions made by individual models

Overview

- The baseline Illinois system
 - □ Learning algorithm
 - Training data
 - Adaptation
 - Linguistic knowledge
- New features in the Illinois-Columbia system
 - Additional error types
 - Model combination
 - Joint inference

Key Dimensions of the Illinois System

- Algorithmic perspective
- Data source: native vs. annotated
- Model adaptation to learner errors
- Linguistic knowledge

Overview of the Illinois System

- Basic pre-processing: POS tagging and shallow parsing using the *Illinois POS tagger and chunker*
- Five machine-learning modules are implemented:

Classifier	Training	Learning arg.	Adaptation	Ling. knowledge
	data			
Article	Loornor		Error inflation (NAACL'10,	Features
Ledifier	AP	BEA'12)		
Prep.	Native	NB	Priors method (ACL'11)	-
Noun	Native	NB	-	Candidate generation
Verb agr.	Native	NB	-	Candidate generation,
Verb form				separate learning (EACL'14)

Table 1: Overview of the Illinois system along the key dimensions.

- AP Averaged Perceptron
- NB Naïve Bayes

Novel Components in the CoNLL-2014 System

- Extends last year's system along several dimensions:
 - Expanded set of errors
 - Word form
 - Mec (punctuation, capitalization)
 - Style
 - Model combination
 - Joint inference

Targeting Additional Errors

- Word form
- Mec (punctuation and capitalization)
- Style

Word Form Errors

Example:

- "The application of surveillance technology serves as a warning to the *murders/murderers and they might not commit more murder"
- Candidates: which words should be corrected?
 - Consider those that occur in the training data as word form errors
- Confusion sets: what are the possible alternatives for a given word?
 - 45% of corrections in the development data also occur in training
 - In addition, we generate inflected verb forms and noun forms for words tagged as verbs and nouns
 - Learning: NB with adaptation trained on the Google corpus

Mec Error Category

- Errors in comma usage
 - □ Two classifiers:
 - A learned module for missing and extraneous commas (AP classifier on learner data with adaptation)
 - A pattern-based module (patterns are extracted from the training data)
 - Capitalization
 - Pattern-based module (patterns are extracted from the training data)

Style Errors

Example:

- \Box don't \rightarrow do not
- □ [clause], however [clause] → [clause]; however [clause]

Model Combination

- The Illinois system (2013) trains individual error-specific components on either learner or native data
 - Learner data
 - Similar genre and word usage
 - Linguistic annotation (POS, parsing, etc.)
 - Native data
 - Large amounts of cheap data
 - May provide more coverage
 - This year, we use model combination:
 - An AP classifier with rich features trained on learner data
 - □ A NB classifier with word n-gram features trained on native data

Joint Inference (Rozovskaya and Roth EMNLP'13)

- Individual modules make inconsistent predictions:
 - Both the **noun** and the **article** classifier identify the problem because the other word is used as part of context features:
 - They believe that <u>such situation</u> must be avoided. such situation \rightarrow such a situations
- We use joint inference implemented on top of individuallylearned models using the ILP formulation (Roth&Yih'04)

Performance of the Illinois-Columbia System on the Development Data

Model		F0.5
The (baseline) Illinoi	s system	33.17
+Model combination	n	34.92-
	Word form	36.07*
+Additional errors	Mec (punc. and cap.)	36.52*
	Style	37.09-
+Joint inference		37.13-

Table 7: Modules marked with a "*" helped on the test data, while those marked with a "-" hurt the performance.

Conclusion

- We have presented the Illinois-Columbia system that participated in the shared task.
- We have described the key design principles of the Illinois-Columbia system that were also used in the Illinois system and presented and evaluated the new components.

Thank you!

