Building a State-of-the-Art Grammatical Error Correction System

Mr. Leuchtag "Liebchen-sweetnessheart, what watch?"
Mrs. Leuchtag "Ten watch."
Mr. Leuchtag "Such much?"

-- Casablanca

-What time is it? -Ten o'clock. -So late?

Alla Rozovskaya Columbia University Dan Roth University of Illinois NAACL, 06/03/2015

English today

Most of the text today is written in **English**

- As many as **2 billion speakers**
 - Billions of tweets and emails
 - □ Millions of scientific articles

 Over 75% of those writers are non-native speakers (Crystal'05)

English as a Second Language (ESL) learners

Existing spell-checkers cannot deal with mistakes typical for non-native speakers of English

Common mistake types: articles, prepositions, noun number, verb errors

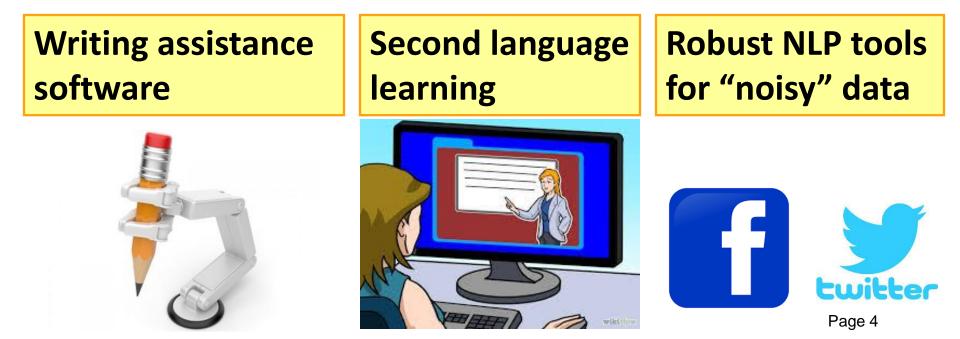
To my opinion, phone has many functions,

included camera and Wi-Fi receiver.

Automated error correction

Growing interest in the topic of error correction in the NLP community

□ **The need for text correction** in many areas

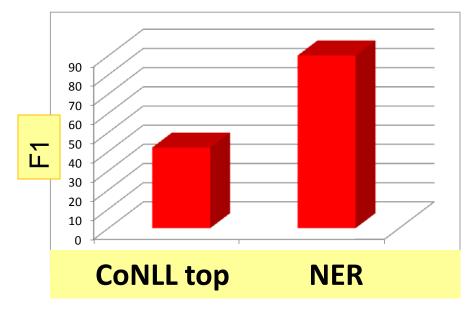


Four text correction competitions in the NLP community

- **HOO competitions** (Dale and Kilgarriff'11, Dale et al.'12)
- CoNLL shared tasks
 - CoNLL-2013 (Ng et al.)
 - Articles, prepositions, noun number, 2 kinds of verb errors
 - **CoNLL-2014** (Ng et al.)
 - All types of mistakes

ESL error correction is a difficult task

vs. other NLP tasks, e.g. Named Entity Recognition



Performance of ESL writers seems high; over 90% of words are used correctly
Because of that, it is hard to improve over the learner texts

Page 6

Machine Translation

Russian: Грибов в лесу полным-полно.

English: There're lots of mushrooms in the forest.

English (Google Translate): Mushrooms in a forest full of them.

In this talk

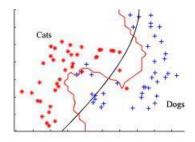
We show that the ESL error correction task can be successfully addressed through a combination of **machine learning techniques** and **linguistic knowledge**

Analysis of the top system in the CoNLL-2013 competition

Key system dimensions

Key system dimensions

Algorithmic perspective: ACL'11



Model adaptation to learner errors: NAACL'10, ACL'11, BEA'12

Choice of the training data

Linguistic knowledge

Outline

- CoNLL-2013 overview
 - Top systems and approaches
 - Illinois system
 - System analysis
 - Conclusions

CoNLL-2013 competition

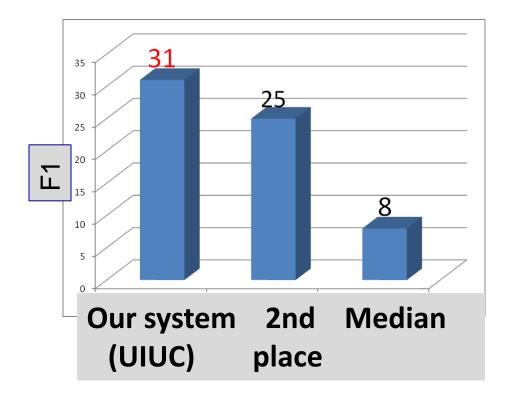
Data:

Essays written by ESL learners at NUS

Training (learner) data: 1.2 M words annotated for errors

- Focuses on 5 common error types:
 - Article, preposition, noun number, verb agreement, verb form
- Participants were allowed to use additional resources

CoNLL-2013 shared task (top results)



The 17 teams that participated used a variety of rule-based and statistical methods.

Top approaches

System	Approach	Resources
UIUC	Machine-learning classifiers	Learner data, Web1T corpus
NTHU	Count-based model	Web1T corpus
HIT	Classifiers and rule- based methods	WordNet
NARA	SMT, classifiers, LMs	Gigaword, learner data
UMC	Rules, classifiers, LMs	Learner, Web1T

Teams used very similar resources!

Outline

- CoNLL-2013 overview
- Top systems and approaches

Illinois system

- Analysis
- Conclusions

The Illinois system

5 error-specific classifiers:

Error	Machine learning approach	Training data	Adaptation	Ling. knowledge
Article	Discriminative (Averaged Perceptron)	Learner data	Yes, artificial errors	Features
Preposition	Naïve Bayes	Native (Web 1T)	Yes, priors	-
Noun number, verb agreement, verb form	Naïve Bayes	Native (Web 1T)	No	Candidate generation, verb finiteness

Outline

- CoNLL-2013 overview
- Top systems and approaches
- The Illinois system
- 🔶 Analysis
- Conclusions

Dim 1: Choice of the learning algorithm (ACL'11)

- Discriminative model Averaged Perceptron (AP)
- Generative model Naïve Bayes (NB)
- □ Language model (LM)
 - Interpolated count-based LM with Jelinek-Mercer linear interpolation

Key findings on the algorithm comparison

The discriminative model is the best-performing model

Averaged Perceptron (AP) > Naïve Bayes (NB) > Language Model (LM)

- AP ≈ 2NB
- AP ≈ 5LM

But sometimes we do not want to train discriminatively!

Choice of the learning algorithm

Error	Classifier	F1
Article	LM	21.11
	NB	32.35
Preposition	LM	12.09
	NB	14.04
Noun number	LM	40.72
	NB	42.60
Verb	LM	20.65
agreement	NB	26.46
Verb form	LM	13.40
	NB	14.50

More experiments and results on another learner data set in the paper!

Training on native data (Web 1T corpus)

Dim. 2: Native vs. learner data for training

Trade-off

- Size
- Type of information
- Different phenomena are in different sides of this tradeoff

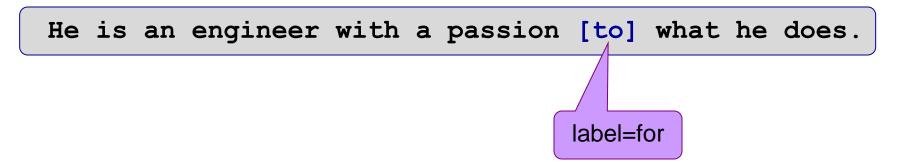
Dim. 2: Two types of information

He is an engineer with a passion [to] what he does.

(1) Context information

He is an engineer with a passion [to] what he does.

(2) Author's word (which could be an error)



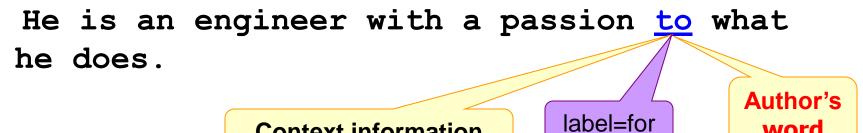
Training on native data

Decision is made only based on context information

Author's word is not taken into consideration

Training on learner data

Training on learner data with annotated errors



Context information

word

Native vs. learner data for training

Error	Train. data	F1 (%)
Article	Native	34.49
	Learner	33.50
Preposition	Native	12.09
	Learner	10.26
Noun number	Native	42.60
	Learner	19.22
Verb	Native	23.46
agreement	Learner 🗸	27.93
Verb form	Native	18.35
	Learner	12.32

Some types of mistakes due to their nature require more data and thus especially benefit, when a model is trained on native data

Adaptation allows us to exploit advantages of the two training sources in one model!

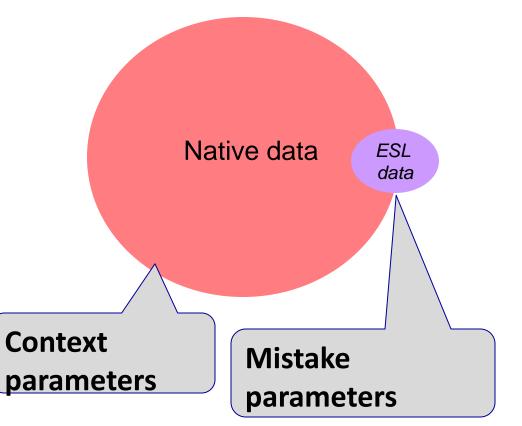
Adaptation

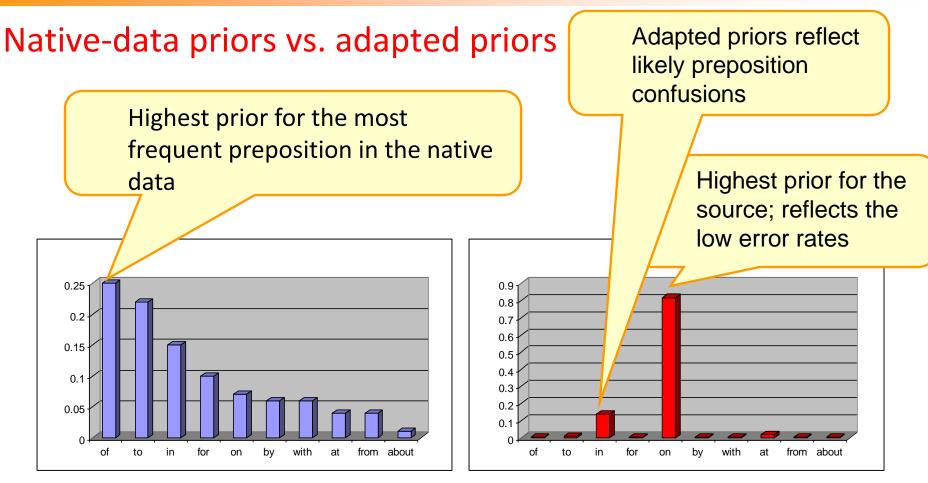
Context parameters are complex, so we need a lot of data for estimation

But mistake parameters are simple!

ESL adaptation

A way of combining lots of native data with small amounts of annotated ESL data in training





Priors based on native data

Adapted priors for the source "on"

Native priors reflect preposition frequencies in native data; adapted priors reflect error rates and likely confusions.

Adaptation with a small amount of annotation

Two methods for the top-performing models:

- •Artificial errors method (for discriminative classifiers, NAACL'10, BEA'12)
- •Priors method (for Naïve Bayes, ACL'11)

NB adaptation

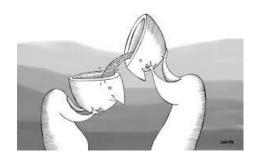
Adaptation is useful for all errors, except for noun number

Error	Algorithm	F1 (%)
Article	NB	18.28
	NB-adapted	19.18
Preposition	NB	09.03
	NB-adapted	10.94
Noun number	NB	23.06
	NB-adapted	22.89
Verb	NB	16.72
agreement	NB-adapted	17.62
Verb form	NB	11.93
	NB-adapted	14.63

NB adaptation: results on the CoNLL training data.

Dim 4: Linguistic knowledge

- Features (article and verb agreement)
- Candidate identification (nouns, verbs)
- Finiteness (verb errors, see EACL'14)



Finite

We<u>discuss</u> this every time.

Non-finite

They let us <u>discuss</u> this.

Grammatical properties associated with each type are mutually exclusive

Using verb finiteness to correct verb errors (EACL'14)

Training method	F1 (%)
One classifier	16.43
Separate finiteness-based	21.08
training	

Verb agreement and verb form errors: Improvement due to separate training

Conclusion

- ESL error correction is an important problem
 - Many applications: e.g. educational technology, data analytics
- The approach I presented is based on:
 - Understanding the linguistic aspects of the task
 - Matching them with the appropriate machine learning solutions

Thank you!