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 “Understanding” is a global decision in which several local 
decisions play a role  but there are mutual dependencies on 
their outcome. 

 It is essential to make coherent decisions in a way that takes 
the interdependencies into account. Joint, Global Inference. 
 Inference: How to support making these global, coherent decisions  
 Learning: How to learn models to support these decisions.  

 



Learning and Inference in Structured Prediction 

 Part 1: Introduction to Structured Prediction (60min) 
 Motivation 
 Examples:  

 NE + Relations  
 Vision 
 Additional NLP Examples 

 Problem Formulation  
 Constrained Conditional Models: Integer Linear Programming 

Formulations  
 Initial thoughts about learning  

 Learning independent models 
 Constraints Driven Learning 

 Initial thoughts about Inference   
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Learning and Inference in Structured Prediction 

 Part 2: Learning a Structured Prediction Model (45min) 
 Definition 
 Local Learning v.s. Global Learning  
 Global Learning Algorithms  

 Online learning: Structured Perceptron 
 Batch learning: Structured SVM  

 Optimization methods for Structured SVM 
 Stochastic Gradient Decent 
 Dual Coordinate Descent  
 Learning on a multi-core machine 
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Learning and Inference in Structured Prediction 

 Part 3: Amortized Inference (45min) 
 Overview 
 Amortization at Inference Time 

 Theorems 
 Decomposition 
 Results 

 Amortization during Learning 
 Approximate Inference 
 Results  
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Learning and Inference in Structured Prediction 

 Part 4: Distributed Representations for Structured Prediction 
(30 min) 
 Distributional representations for inputs is a success story 

 Eg. word vectors 
 Outputs are discrete objects 

 One of a set of labels (document classification)  
 Label sequences (POS tagging, Chunking, NER) 
 Trees with labeled edges/nodes (Parsing) 
 Arbitrary graphs (Semantic Role Labeling, event extraction) 

 
 Can we think of distributional representations for structures? 

 Starting with individual labels to compose full structures 
 A natural generalization of standard structured prediction formalism 

 



Learning and Inference in Structured Prediction 

 Part 5:  Structured Prediction Software (15min) 
 
 Illinois Structured Learning Library  

 A general purpose learning library in JAVA  
 Support Structured Perceptron and Structured SVM 

 Implement your own applications 
 
 

 Part 6: Conclusion and Discussion (15min) 
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Learning and Inference in Structured Prediction 

 
 Part 1: Introduction to Structured Prediction (55min) 

 Motivation 
 Examples:  

 NE + Relations  
 Vision 
 Additional NLP Examples 

 Problem Formulation  
 Constrained Conditional Models: Integer Linear Programming Formulations  

 Initial thoughts about learning  
 Learning independent models 
 Constraints Driven Learning 

 Initial thoughts about Inference   
 Amortized Inference 
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Pipeline 

 Conceptually, Pipelining is a crude approximation  
 Interactions occur across levels and down stream decisions often interact 

with previous decisions. 
 Leads to propagation of errors 
 Occasionally, later stages could be used to correct earlier errors. 

 But, there are good reasons to use pipelines  
 Putting everything in one basket may not be right  
 How about choosing some stages and think about them jointly? 
  

POS Tagging Phrases Semantic Entities  Relations 

   Most problems are not single classification problems 

Parsing WSD Semantic Role Labeling 

Raw Data 

Either way, we need a way to learn models  and  make predictions (inference; decoding)   
that assign values to multiple interdependent variables  
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Right  
facing 
bicycle 

left wheel 
right wheel 

handle bar saddle/seat 

How would you design a predictor that labels all the parts 
using the tools we have seen so far? 
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One approach to build this structure 

14 
Photo by Andrew Dressel - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 

2. Right 
wheel 
detector 

1. Left 
wheel 
detector 

3. Handle 
bar 
detector 
4. Seat 
detector 

Final output: Combine the predictions of these 
individual classifiers (local classifiers) 

 
The predictions interact with each other 

 
Eg: The same box can not be both a left wheel and a 

right wheel, handle bar does not overlap with seat, etc 
 

Need inference to compose  the output 
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 Parsing; Semantic Parsing; Summarization; Co-reference… 

 Common Information Extraction Tasks: 
 Entities, Relations,… 

 Common Vision Task: 
 Parsing objects; scene segmentation and interpretation,…. 

 Many “pure” machine learning approaches exist 
 Hidden Markov Models (HMMs) ; CRFs […there are special cases…] 
 Structured Perceptrons and SVMs…      [… to be discussed later] 

 However, … 
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 Higher Order HMM/CRF? 
 Increasing the window size? 
 Adding a lot of new features  

 Requires a lot of labeled examples 
 

 What if we only have a few labeled examples? 
 
 

 Instead: 
 Constrain the output to make sense – satisfy our output expectations 
 Push the  (simple) model in a direction that makes sense – minimally 

violates our expectations. 
  

Increasing the model complexity 

Can we keep the learned model simple 
and still make expressive decisions?  

Increase difficulty of Learning 
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Easy to express pieces of “knowledge” 

Non Propositional; May use Quantifiers  
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 Adding constraints, we get correct results! 
 Without changing the model 

 
      [AUTHOR]    Lars Ole Andersen .  
      [TITLE]           Program analysis and specialization for the  
        C Programming language . 
 [TECH-REPORT]   PhD thesis . 
 [INSTITUTION]   DIKU , University of Copenhagen ,  
 [DATE]     May, 1994 . 
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 We introduce the Constrained Conditional Models formulation which allows: 
 Learning a simple model  
 Making decisions with a more complex model 

 Some of the structure imposes externally/declaratively  
 Accomplished by directly incorporating constraints to bias/re-rank decisions 

made by the simpler model 
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(Soft) constraints 
component 

Weight Vector for 
“local” models 
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Constrained Conditional Models 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  exact 
solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

Amortized ILP inference Scheme 

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, CRF) 
or a combination 

How to train? 

Training is learning the objective function 

Decompose objective? Decouple? Train 
Jointly? 

How to exploit the structure to        
minimize supervision? 

New (joint and distributed  algorithms 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  



 Inference: given input x (a document, a sentence),  

                         predict the best structure y = {y1,y2,…,yn} 2 Y  (entities & relations) 
 Assign values to the y1,y2,…,yn, accounting for dependencies among yis 
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 Inference requires, in principle, touching all y 2 Y at decision time, when we 
are given x 2 X and attempt to determine the best y 2 Y for it, given w  
 For some structures, inference is computationally easy.  
 Eg: Using the Viterbi algorithm  
 In general, NP-hard (can be formulated as an ILP) 
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                       find a scoring function w that minimizes empirical loss. 
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 Learning is thus driven by the attempt to find a weight vector w such that 

for each given annotated example (xi, yi): 
 
 
 

 

 We call these conditions the learning constraints. 
 

 In most learning algorithms used today, the update of the weight vector w 
is done in an on-line fashion,  
 Think about it as Perceptron; this procedure applies to Structured Perceptron, 

CRFs, Linear Structured SVM 
 W.l.o.g. (almost) we can thus write the generic structured learning 

algorithm as follows: 
  

8 y 
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Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 
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In the structured case, prediction 
(inference) is often intractable but 
needs to be done many times 
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Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
 Do: 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y  wEASY
T ÁEASY ( xi ,y) + wHARD

T ÁHARD ( xi ,y)  
 Check the learning constraint 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndDo 
 

Solution I: 
decompose the 
scoring function to 
EASY and HARD parts 
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 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndDo 
 

Solution I: 
decompose the 
scoring function to 
EASY and HARD parts 

EASY: could be feature functions that correspond to an HMM, a linear CRF,   or 
even ÁEASY (x,y) = Á(x), omiting dependence on y, corresponding to classifiers. 
May not be enough if the HARD part is still part of each inference step. 
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Solution II: Disregard 
some of the 
dependencies: 
assume a simple 
model. 
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Solution III: Disregard some of the dependencies 
during learning; take into account at decision time 

Page 27 



Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
 Do: 
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T ÁHARD ( xi ,y)  
 Check the learning constraint 
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 EndDo 
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 This is the most commonly used solution in NLP today 

Solution III: Disregard some of the dependencies 
during learning; take into account at decision time 
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 Decouple? Decompose? Force u to model hard constraints?  

 A way to push the learned model to satisfy our output expectations (or 
expectations from a latent representation)  

 [CoDL, Chang, Ratinov, Roth (07, 12); Posterior Regularization, Ganchev et. al 
(10); Unified EM (Samdani & Roth(12)] 
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 Decouple? Decompose? Force u to model hard constraints?  

 A way to push the learned model to satisfy our output expectations (or 
expectations from a latent representation)  

 [CoDL, Chang, Ratinov, Roth (07, 12); Posterior Regularization, Ganchev et. al 
(10); Unified EM (Samdani & Roth(12)] 

 The benefits of thinking about it as an ILP are conceptual and computational.  
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While Á(x, y) and C(x, y)  could be the same; we want C(x, y) to express 
high level declarative knowledge over the statistical models.  
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Archetypical Information Extraction 
Problem: E.g., Concept Identification 
and Typing, Event Identification, etc.  
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I left my nice pearls to her 

Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

Use the pipeline architecture’s simplicity while maintaining uncertainty:  keep 
probability distributions over decisions & use global inference at decision time. 

Learning Based Java: allows a developer 
to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  
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Edges that are chosen 
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[Roth & Yih, ICML’05] discuss training paradigms for HMMs and CRFs, 
when augmented with additional knowledge  



Constraints 

 We have seen three different constraints in this example 
 Unique label for each word 
 Chosen edges must form a path 
 There must be a verb 

 All three can be expressed as  linear inequalities 
 

 In terms of modeling, there is a difference 
 The first two define the output structure (in this case, a sequence) 
 The third one adds knowledge to the problem 
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A conventional 
model 

In CCMs, knowledge is an integral 
part of the modeling 



Learning and Inference in Structured Prediction 

 Part 1: Introduction to Structured Prediction (60min) 
 Motivation 
 Examples:  

 NE + Relations  
 Vision 
 Additional NLP Examples 

 Problem Formulation  
 Constrained Conditional Models: Integer Linear Programming 

Formulations  
 Initial thoughts about learning  

 Learning independent models 
 Constraints Driven Learning 

 Initial thoughts about Inference   
 Amortized Inference 
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Constrained Conditional Models—ILP Formulations 

 Have been shown useful in the context of many NLP problems 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; Knowledge 
Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 

more; Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
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 Some theoretical work on training paradigms [Punyakanok et. al., 05 

more; Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

 Good summary and description of training paradigms:  
 [Chang, Ratinov & Roth, Machine Learning Journal 2012] 

 
 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html 
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LEARNING 

 
 

 The following (high level) examples will briefly present several 
learning paradigms where  
 The building blocks are the learning algorithms introduced later  
 Inference is necessary, as part of learning and the final decision. 

 The focus is on scenarios where  
 There is a need to learn more than one model (combine via inference) 
 Semi-supervised scenarios 
 Learning with latent representations 
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learning paradigms where  
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 Inference is necessary, as part of learning and the final decision. 

 The focus is on scenarios where  
 There is a need to learn more than one model (combine via inference) 
 Semi-supervised scenarios 
 Learning with latent representations 

 
 

2:45 

y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  
The second part 
of the tutorial is 
on how to learn  

The third part of the tutorial is on how to 
do inference  
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Extended Semantic Role Labeling 

Page 48 

 Many predicates; many roles; how to deal with more phenomena?  

Sentence level 
analysis may be 
influenced by 
other sentences 
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Computational Challenges 

 Predict the preposition relations 
 [EMNLP, ’11] 

 Identify the relation’s arguments 
 [PP: Trans. Of ACL, ’13, Comma: AAAI’16] 
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 [PP: Trans. Of ACL, ’13, Comma: AAAI’16] 
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 Minimal annotation  
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 Learning models in these settings exploits two principles: 
 Coherency among multiple phenomena   

 
 



Coherency in Semantic Role Labeling 

Predicate-arguments generated should be consistent across phenomena 

The touchdown scored by Bradford cemented  the victory of the Eagles. 

Verb Nominalization Preposition 

Predicate: score 
 
A0: Bradford (scorer) 
A1: The touchdown 
(points scored) 

Predicate: win 
 
A0: the Eagles (winner) 

Sense: 11(6) 
 
“the object of the preposition 
is the object of the underlying 
verb of the nominalization” 

Linguistic Constraints:  
A0: the Eagles ⇔ Sense(of): 11(6) 

A0: Bradford ⇔ Sense(by): 1(1) 
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Computational Challenges 

 Predict the preposition relations 
 [EMNLP, ’11] 

 Identify the relation’s arguments 
 [PP: Trans. Of ACL, ’13, Comma: AAAI’16] 

 
 Very little supervised data  

 per phenomena 

 Minimal annotation  
 only at the predicate level  

 Learning models in these settings exploits two principles: 
 Coherency among multiple phenomena   
 Constraining latent structures (relating observed and latent variables) 
 Done via global inference via CCM 
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Joint inference (CCMs) 

Verb arguments Preposition relations 
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Verb arguments Preposition relations 

Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  
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Each argument label 

Argument candidates 

Verb arguments Preposition relations 

Variable ya,t  indicates whether  candidate 
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ca,t   is the corresponding model score  
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Verb SRL constraints Preposition SRL Constraints  

Verb arguments Preposition relations 

Constraints: 

Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

+ …. 

+ Joint constraints between tasks; easy with ILP formulations 

Joint Inference – no (or minimal) joint learning 
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Extended SRL [Demo] 

 
Destination [A1] 
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Joint inference over phenomena–specific 
models  to enforce consistency  

Models trained with latent structure: 
senses, types, arguments 
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Extended SRL [Demo] 

 
Destination [A1] 
 

Joint inference over phenomena–specific 
models  to enforce consistency  

Models trained with latent structure: 
senses, types, arguments 

 More to do with other relations, discourse phenomena,… 
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Strategies for Improving the Results 

 (Standard) Machine Learning Approaches 
 Higher Order HMM/CRF? 
 Increasing the window size? 
 Adding a lot of new features  

 Requires a lot of labeled examples 
 

                                              
 
 

          
                                                               
                                                                       

                           

Increasing the model complexity 

Increase difficulty of Learning 
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Strategies for Improving the Results 

 (Standard) Machine Learning Approaches 
 Higher Order HMM/CRF? 
 Increasing the window size? 
 Adding a lot of new features  

 Requires a lot of labeled examples 
 

 What if we only have a few labeled examples? 
 
 

 Instead: 
 Constrain the output to make sense – satisfy our expectations 
 Push the  (simple) model in a direction that makes sense – minimally 

violates our expectations. 
  

Increasing the model complexity 

Can we keep the learned model simple 
and still make expressive decisions?  

Increase difficulty of Learning 
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Expectations from the output (Constraints) 

 Each field must be a consecutive list of words and can appear 
at most once in a citation.  

 State transitions must occur on punctuation marks. 
 The citation can only start with AUTHOR or EDITOR.  
 The words pp., pages correspond to PAGE. 
 Four digits starting with 20xx and 19xx are DATE. 
 Quotations can appear only in TITLE 
 ……. 
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Easy to express pieces of “knowledge” 

Non Propositional; May use Quantifiers  
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Information Extraction with Expectation Constraints 

 Adding constraints, we get correct results! 
 Without changing the model 

 
 
 

      [AUTHOR]    Lars Ole Andersen .  
      [TITLE]           Program analysis and specialization for the  
        C Programming language . 
 [TECH-REPORT]   PhD thesis . 
 [INSTITUTION]   DIKU , University of Copenhagen ,  
 [DATE]     May, 1994 . 
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Guiding (Semi-Supervised) Learning with Constraints 

Model 

Decision Time  
Constraints 

Un-labeled Data 

Constraints 

 In traditional Semi-Supervised learning the model can drift 
away from the correct one.  

 Constraints can be used to generate better training data 
 At training to improve labeling of un-labeled data (and thus 

improve the model) 
 At decision time, to bias the objective function towards favoring 

constraint satisfaction.  
  

Better model-based labeled data Better Predictions 

Seed examples 
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(w,½)=learn(L)  
For N iterations do 
  T=φ  
     For each x in unlabeled dataset 
    h Ã argmaxy wT Á(x,y) - ∑ ½ dC(x,y) 
    T=T ∪ {(x, h)}   
   
    (w,½) = γ (w,½) + (1- γ) learn(T) 

[Chang, Ratinov, Roth, ACL’07;ICML’08,MLJ’12] 
See also: Ganchev et. al. 10 (PR) 
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    T=T ∪ {(x, h)}   
   
    (w,½) = γ (w,½) + (1- γ) learn(T) 

[Chang, Ratinov, Roth, ACL’07;ICML’08,MLJ’12] 
See also: Ganchev et. al. 10 (PR) 

Supervised learning algorithm  
parameterized by  (w,½). [LATER] 

Inference with constraints:  
augment the training set  

Learn from new training data 
Weigh supervised &  
unsupervised models. 

Excellent Experimental Results showing the advantages of using constraints, 
especially with small amounts of labeled data [Chang et. al, Others] 
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Constraints Driven Learning (CoDL)    Archetypical Semi/un-supervised 
learning: A constrained EM  



Value of Constraints in Semi-Supervised Learning 

Objective function:  

# of available labeled examples 

Learning w 10 Constraints 
Learning w/o Constraints: 300 examples. 
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See Chang et. al. MLJ’12 on 
the use of soft constraints 
in CCMs.  
The tutorial’s web page will 
include a write-up on  ILP 
formulations incorporating 
soft constraints. 



CoDL as Constrained Hard EM 

 Hard EM is a popular variant of EM 
 While EM estimates a distribution over hidden variables in 

the E-step, 
 … Hard EM predicts the best output in the E-step 

h= y*= argmaxy Pw(y|x) 

 Alternatively, hard EM predicts a peaked distribution 

q(y) = ±y=y*  
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CoDL as Constrained Hard EM 

 Hard EM is a popular variant of EM 
 While EM estimates a distribution over hidden variables in 

the E-step, 
 … Hard EM predicts the best output in the E-step 

h= y*= argmaxy Pw(y|x) 

 Alternatively, hard EM predicts a peaked distribution 

q(y) = ±y=y*  
 Constrained-Driven Learning (CODL) – can be viewed as a 

constrained version of hard EM:  
 

       y*= argmaxy:Uy· b Pw(y|x) 

  Constraining the 
feasible set 
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Constrained EM: Two Versions 

 While Constrained-Driven Learning  [CODL; Chang et al, 07,12]  

        is a  constrained version of hard EM: 
                          y*= argmaxy:Uy· b Pw(y|x) 

 

 … It is possible to derive a constrained version of EM: 
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Constrained EM: Two Versions 

 While Constrained-Driven Learning  [CODL; Chang et al, 07,12]  

        is a  constrained version of hard EM: 
                          y*= argmaxy:Uy· b Pw(y|x) 

 

 … It is possible to derive a constrained version of EM: 
 To do that, constraints are relaxed into expectation constraints 

on the posterior probability q:  
Eq[Uy] · b 

 The E-step now becomes: [Neal & Hinton ‘99 view of EM] 
               q’ =  
 
 This is Taskar’s Posterior Regularization [PR] [Ganchev et al, 10] 
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Which (Constrained) EM to use? 

 There is a lot of literature on EM vs hard EM 
 Experimentally, the bottom line is that with a good enough 

initialization point, hard EM is probably better (and more efficient). 
 E.g., EM vs hard EM (Spitkovsky et al, 10) 

 Similar issues exist in the constrained case: CoDL vs. PR 
 The constraints view helped developing additional algorithmic insight 

 
                                               

                                                              
          𝛾𝛾 that  
 Provides a continuum of algorithms – from EM to hard EM, and 

infinitely many new EM algorithms in between.   
 Implementation wise, not more complicated than EM 
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𝛾𝛾 𝛾𝛾𝛾𝛾 that  

 There is a lot of literature on EM vs hard EM 
 Experimentally, the bottom line is that with a good enough 

initialization point, hard EM is probably better (and more efficient). 
 E.g., EM vs hard EM (Spitkovsky et al, 10) 

 Similar issues exist in the constrained case: CoDL vs. PR 
 The constraints view helped developing additional algorithmic insight 

 
 Unified EM (UEM)   [Samdani & Roth, NAACL-12] 

 Provides a continuum of algorithms – from EM to hard EM, and 
infinitely many new EM algorithms in between.   

 Implementation wise, not more complicated than EM 
 Implementation wise, not more complicated than EM 
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LEARNING 

 
 The following (high level) examples will briefly present several 

learning paradigms where  
 The building blocks are the learning algorithms introduced later  
 Inference is necessary, as part of learning and the final decision. 

 The focus is on scenarios where  
 There is a need to learn more than one model (combine via inference) 
 Semi-supervised scenarios 
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The second part 
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on how to learn  
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 The following (high level) examples will briefly present several 

learning paradigms where  
 The building blocks are the learning algorithms introduced later  
 Inference is necessary, as part of learning and the final decision. 

 The focus is on scenarios where  
 There is a need to learn more than one model (combine via inference) 
 Semi-supervised scenarios 
 Learning with Latent Structured Representations 

 A meta-algorithm that makes use of structured learning algorithm s 
 Including approaches that make use of declarative constraints to 

minimize the  level of supervision using constraints  
 [Chang et.al. ICML’10, NAACL’10,…]  
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y = argmaxy 2 Y  wTÁ(x, y) + uTC(x, y)  
The second part 
of the tutorial is 
on how to learn  

The third part of the tutorial is on how to 
do inference  



INFERENCE 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 
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INFERENCE 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 
 

 Inference is done many times – both at decision time (one inference per 
predicates…) and during training. 
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Amortized ILP based Inference 

 Imagine that you already solved many structured output 
inference problems 
 Co-reference resolution; Semantic Role Labeling; Parsing citations; 

Summarization; dependency parsing; image segmentation,… 
 Your solution method doesn’t matter either 
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a 0-1 Linear Program:   
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After solving n inference problems, can we make the 
(n+1)th one faster?  

 Very general: All discrete MAP problems can be 
formulated as 0-1 LPs [Roth & Yih’04; Taskar ’04] 

 We only care about inference formulation, not 
algorithmic solution 
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Number of Tokens 

Number of examples of a given size  
Number of unique POS tag sequences  

Number of structures is 
much smaller than the 
number of sentences 



The Hope: Dependency Parsing on Gigaword 
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POS Tagging on Gigaword 

 
 
 
 
 
 
 
 
 
 

Number of Tokens 

How skewed is the 
distribution of the 
structures? 
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POS Tagging on Gigaword 

 
 
 
 
 
 
 
 
 
 

Number of Tokens 

How skewed is the 
distribution of the 
structures? 

A small # of 
structures occur 
very frequently 



Redundancy in Inference and Learning 

 This redundancy is important since in all NLP tasks there is a 
need to solve many inferences, at least one per sentence. 

 However, it is as important in structured learning,  where 
algorithms cycle between 
 performing inference, and  
 updating the model.  
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 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 
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Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the learning & Inference program?  
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We give conditions on the objective functions  
(for all objectives with the same # or variables and same feasible set),  

under which the solution of a new problem Q is the same as the 
one of  P (which we already cached)  

We argue here that the inference formulation 
provides a new level of abstraction. 

If CONDITION (problem cache, new problem) 
  then (no need to call the solver) 
 SOLUTION(new problem) = old solution 
Else 
 Call base solver and update cache 
End 

0.04 ms 

2 ms 
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By decomposing the objective function, building 
on the fact that “smaller structures” are more 
redundant, it is possible to get even better results. 
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By decomposing the objective function, building 
on the fact that “smaller structures” are more 
redundant, it is possible to get even better results. 
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The results show that, indeed, the inference 
formulation provides a new level of abstraction 
that can be exploited to re-use solutions 

Even stronger results can 
be shown when ILP 

inference is used within the 
Structured Learning  loop. 

(after the break)  



First Summary 

 Introduced Structured Prediction 
 Many examples 
 Introduced the key building blocks of structured learning and 

inference 
 Focused on Constraints Conditional Models 
 CCMS: The motivating scenario is the case in which  

 Joint INFERENCE is essential 
 Joint LEARNING should be done thoughtfully 

 Not everything can be learned together 
 We don’t always want to learn everything together 

 Moving on to  
 Details on Joint Learning 
 Details on Inference 
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