i}

qgcrppye CoMpuTATION GROUP ][
ReLAT A TS

SITY OF ILLINOIS AT URBANA-CHAMPAIGN

/{‘:_.

Learning and Inference
I
Structured Prediction Models

Kai-Wei Chang, Gourab Kundu, Dan Roth, Vivek Srikumar

MSR, IBM, lllinois, Utah

February 2016

AAAI-16, Phoenix, AZ
Page 1



m All interesting decisions are structured




S

m All interesting decisions are structured :g/>?\

W NP Constituency-hased parse tree

D N

Ju.hn h.it thc hﬂl.




S

m All interesting decisions are structured :g/>?\

W NP Constituency-hased parse tree

D N

Ju.hn h.it thc hﬂl.




m All interesting decisions are structured :g/>?\

W NP Constituency-based parse tree
D N

Ju.hn h.it thc hﬂl.

Modifier




m All interesting decisions are structured

Modifier




m All interesting decisions are structured

Modifier

m “Understanding” is a global decision in which several local
decisions play a role but there are mutual dependencies on
their outcome.

m It is essential to make coherent decisions in a way that takes
the interdependencies into account. Joint, Global Inference.




m All interesting decisions are structured

Modifier

m “Understanding” is a global decision in which several local
decisions play a role but there are mutual dependencies on
their outcome.

m It is essential to make coherent decisions in a way that takes
the interdependencies into account. Joint, Global Inference.

1 Inference: How to support making these global, coherent decisions
[1 Learning: How to learn models to support these decisions.




Learning and Inference in Structured Prediction

Part 1: Introduction to Structured Prediction (60min)
Motivation
Examples:
NE + Relations
Vision
Additional NLP Examples
Problem Formulation

Constrained Conditional Models: Integer Linear Programming
Formulations

Initial thoughts about learning
Learning independent models
Constraints Driven Learning

Initial thoughts about Inference
Amortized Inference
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Learning and Inference in Structured Prediction

Part 2: Learning a Structured Prediction Model (45min)
Definition
Local Learning v.s. Global Learning

Global Learning Algorithms
Online learning: Structured Perceptron
Batch learning: Structured SVM
Optimization methods for Structured SVM
Stochastic Gradient Decent
Dual Coordinate Descent
Learning on a multi-core machine
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m Part 3: Amortized Inference (45min)
1 Overview

1 Amortization at Inference Time
= Theorems
= Decomposition
= Results
1 Amortization during Learning
= Approximate Inference

= Results




Learning and Inference in Structured Prediction

Part 4: Distributed Representations for Structured Prediction
(30 min)
Distributional representations for inputs is a success story
Eg. word vectors
Outputs are discrete objects
One of a set of labels (document classification)
Label sequences (POS tagging, Chunking, NER)

Trees with labeled edges/nodes (Parsing)
Arbitrary graphs (Semantic Role Labeling, event extraction)

Can we think of distributional representations for structures?
Starting with individual labels to compose full structures
A natural generalization of standard structured prediction formalism
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Learning and Inference in Structured Prediction

Part 5: Structured Prediction Software (15min)

lllinois Structured Learning Library
A general purpose learning library in JAVA
Support Structured Perceptron and Structured SVM

Implement your own applications

Part 6: Conclusion and Discussion (15min)
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PART 1: INTRODUCTION




Learning and Inference in Structured Prediction

‘Part 1: Introduction to Structured Prediction (55min)

Motivation
Examples:
NE + Relations
Vision
Additional NLP Examples
Problem Formulation
Constrained Conditional Models: Integer Linear Programming Formulations
Initial thoughts about learning
Learning independent models
Constraints Driven Learning
Initial thoughts about Inference
Amortized Inference
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Recognizing Entities and Relations

Bernie’s wife, Jane, is a native of Brooklyn

E1_ B2 ,E3
R12 R23




Joint Inference with General Constraint Structure [roth&Yih'04,07,....]

Recognizing Entities and Relations

other | 0.05 other | (0.10 other | 0.05
per 0.85 per 0.60 per 0.50
loc 0.10 loc 0.30 loc 0.45

Bernie’s wife, Jane, is a native of Brooklyn
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irrelevant 0.05 irrelevant 0.10
spouse_of 0.45 spouse_of 0.05
born_in 0.50 born_in 0.85
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Recognizing Entities and Relations
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Joint Inference with General Constraint Structure [roth&Yih'04,07,....]

Recognizing Entities and Relations @ @
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Joint Inference with General Constraint Structure [roth&Yih'04,07,....]

Recognizing Entities and Relations Joint inference gives
good improvement
X
other | 0.05 other | (0.10 other | 0.05
per 0.85 per 0.60 per 0.50
loc 0.10 loc 0.30 loc 0.45
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Joint Inference with General Constraint Structure [roth&Yih'04,07,....]

Recognizing Entities and Relations Joint inference gives
good improvement
X
other | 0.05 other | (0.10 other | 0.05
per 0.85 per 0.60 per 0.50
loc 0.10 loc 0.30 loc 0.45

1 . _ _ Key Questions:
Bernie’s wife,| Jane, is a native How to learn the model(s)?

What is the source of the knowledge?

El_ B2

How to guide the global inference?
% R, Ras
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Joint Inference with General Constraint Structure [roth&Yih'04,07,....]

Recognizing Entities and Relations Joint inference gives
good improvement
X
other | 0.05 other | (0.10 other | 0.05
per 0.85 per 0.60 per 0.50
loc 0.10 loc 0.30 loc 0.45

1 . _ _ Key Questions:
Bernie’s wife,| Jane, is a native How to learn the model(s)?

What is the source of the knowledge?

El_ B2

How to guide the global inference?
% R, Ras
irrelevant 0.05 irrelevant 0.10
spouse_of 0.45 spouse_of 0.05
born_in 0.50 born_in 0.85

Models could be learned separately/jointly; constraints may come up only at decision time.
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Joint Inference with General Constraint Structure [roth&Yih'04,07,....]

Recognizing Entities and Relations Joint inference gives
good improvement
=<
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Pipeline Motiyy,

Raw Data Most problems are not single classification problems

N — .

POS Tagging = Phrases = Semantic Entities =—> Relations

\ Parsing — WSD — Semantic Role Labeling
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Pipeline Moty

Raw Data Most problems are not single classification problems

N — .

POS Tagging = Phrases = Semantic Entities =—> Relations
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Pipeline Moty

Raw Data Most problems are not single classification problems

N — .

POS Tagging = Phrases = Semantic Entities =—> Relations

Conceptually, Pipelining is a crude approximation
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Pipeline Moty
On /

Raw Data Most problems are not single classification problems

N — -

POS Tagging = Phrases = Semantic Entities =—> Relations

Conceptually, Pipelining is a crude approximation
Interactions occur across levels and down stream decisions often interact
with previous decisions.
Leads to propagation of errors
Occasionally, later stages could be used to correct earlier errors.
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Pipeline Moty
On /

Raw Data Most problems are not single classification problems

N — -

POS Tagging = Phrases = Semantic Entities =——> Relations

Conceptually, Pipelining is a crude approximation

Interactions occur across levels and down stream decisions often interact
with previous decisions.

Leads to propagation of errors
Occasionally, later stages could be used to correct earlier errors.

But, there are good reasons to use pipelines
Putting everything in one basket may not be right
How about choosing some stages and think about them jointly?
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Raw Data Most problems are not single classification problems

\ _
POS Tagging = Phrases Semantic Entities —> Rel@

Conceptually, Pipelining is a crude approximation

Interactions occur across levels and down stream decisions often interact
with previous decisions.

Leads to propagation of errors
Occasionally, later stages could be used to correct earlier errors.

But, there are good reasons to use pipelines
Putting everything in one basket may not be right
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Pipeline Mol‘/'Vat,-
On /

Raw Data Most problems are not single classification problems

\ _
POS Tagging = Phrases Semantic Entities —> Rel@

Either way, we need a way to learn models and make predictions (inference; decoding)
that assign values to multiple interdependent variables

Conceptually, Pipelining is a crude approximation

Interactions occur across levels and down stream decisions often interact
with previous decisions.

Leads to propagation of errors
Occasionally, later stages could be used to correct earlier errors.
But, there are good reasons to use pipelines

Putting everything in one basket may not be right
How about choosing some stages and think about them jointly?
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facing
bicycle

left wheel
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saddle/seat

Right
facing
bicycle

left wheel

How would you design a predictor that labels all the parts
using the tools we have seen so far?

handle bar

right wheel




Left wheel detector: Is there a wheel in this box? Binary classifier
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1. Left
wheel
detector

2. Right
wheel
detector

3. Handle
bar

detector
4. Seat

detector

Final output: Combine the predictions of these
individual classifiers (local classifiers)

The predictions interact with each other

Eg: The same box can not be both a left wheel and a
right wheel, handle bar does not overlap with seat, etc

Need inference to compose the output



m For each instance, assign values to a set of variables

m Output variables depend on each other




Task of Interests: Structured Output

For each instance, assign values to a set of variables
Output variables depend on each other

Common NLP tasks
Parsing; Semantic Parsing; Summarization; Co-reference...

Common Information Extraction Tasks:
Entities, Relations,...

Common Vision Task:
Parsing objects; scene segmentation and interpretation,....
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Task of Interests: Structured Output

For each instance, assign values to a set of variables
Output variables depend on each other
Common NLP tasks

Parsing; Semantic Parsing; Summarization; Co-reference...
Common Information Extraction Tasks:

Entities, Relations,...
Common Vision Task:

Parsing objects; scene segmentation and interpretation,....

Many “pure” machine learning approaches exist

Hidden Markov Models (HMMs); CRFs [...there are special cases...]
Structured Perceptrons and SVMs...  [... to be discussed later]

However, ...
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Information Extraction without Output Expectations

Lars Ole Andersen . Program analysis and specialization for the C
Programming language. PhD thesis. DIKU , University of
Copenhagen, May 1994 .

[AUTHOR]

[TITLE]

[EDITOR]
[BOOKTITLE]

[TECH-REPORT]
[INSTITUTION]

[DATE]
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Information Extraction without Output Expectations

Lars Ole Andersen . Program analysis and specialization for the C
Programming language. PhD thesis. DIKU , University of
Copenhagen, May 1994 .

Prediction result of a trained HMM

[AUTHOR] Lars Ole Andersen . Program analysis and
[TITLE] specialization for the

[EDITOR] C

[BOOKTITLE] Programming language

[TECH-REPORT] . PhD thesis.

[INSTITUTION] DIKU, University of Copenhagen , May
[DATE] 1994 .
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Prediction result of a trained HMM
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Information Extraction without Output Expectations

Lars Ole Andersen . Program analysis and specialization for the C
Programming language. PhD thesis. DIKU , University of
Copenhagen, May 1994 .

Prediction result of a trained HMM

[AUTHOR] Lars Ole Andersef . Program analysis and
[TITLE] specialization for the

[EDITOR] C

[BOOKTITLE] Programming language

[TECH-REPORT] . BhD thesis.

[INSTITUTION] BiKU , University of Copenhager/, May
[DATE] 1994 .

Violates lots of natural constraints!
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m (Standard) Machine Learning Approaches
1 Higher Order HMM/CRF?
(1 Increasing the window size?

Increasing the model complexity

1 Adding a lot of new features Increase difficulty of Learning

= Requires a lot of labeled examples




Strategies for Improving the Results

m (Standard) Machine Learning Approaches
0 Higher Order HMM/CRF?
] Increasing the window size?

Increasing the model complexity

1 Adding a lot of new features Increase difficulty of Learning

= Requires a lot of labeled examples

1 What if we only have a few labeled examples?

Can we keep the learned model simple
and still make expressive decisions?
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Strategies for Improving the Results

(Standard) Machine Learning Approaches

Higher Order HMM/CRF?
Increasing the window size?

Increasing the model complexity

Adding a lot of new features Increase difficulty of Learning

Requires a lot of labeled examples

What if we only have a few labeled examples?

Can we keep the learned model simple
and still make expressive decisions?

Instead:

Constrain the output to make sense — satisfy our output expectations

Push the (simple) model in a direction that makes sense — minimally
violates our expectations.

wpye CompuTaTiONn GRrROUP
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Expectations from the output (Constraints)

Each field must be a consecutive list of words and can appear
at most once in a citation.

State transitions must occur on punctuation marks.
The citation can only start with AUTHOR or EDITOR.
The words pp., pages correspond to PAGE.

Four digits starting with 20xx and 19xx are DATE.
Quotations can appear only in TITLE

L'i
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Expectations from the output (Constraints)

Each field must be a consecutive list of words and can appear
at most once in a citation.

State transitions must occur on punctuation marks.
The citation can only start with AUTHOR or EDITOR.
The words pp., pages correspond to PAGE.

Four digits starting with 20xx and 19xx are DATE.
Quotations can appear only in TITLE

Easy to express pieces of “knowledge”
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Expectations from the output (Constraints)

Each field must be a consecutive list of words and can appear
at most once in a citation.

State transitions must occur on punctuation marks.
The citation can only start with AUTHOR or EDITOR.
The words pp., pages correspond to PAGE.

Four digits starting with 20xx and 19xx are DATE.
Quotations can appear only in TITLE

Easy to express pieces of “knowledge”

Non Propositional; May use Quantifiers

ComruratTion Group
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Information Extraction with Expectation Constraints

Adding constraints, we get correct results!
Without changing the model

[AUTHOR] Lars Ole Andersen .

[TITLE] Program analysis and specialization for the
C Programming language .

[TECH-REPORT] PhD thesis .

[INSTITUTION] DIKU , University of Copenhagen,

[DATE] May, 1994 .

ruTATION GrOUP
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Information Extraction with Expectation Constraints

Adding constraints, we get correct results!
Without changing the model

[AUTHOR] Lars Ole Andersen .

[TITLE] Program analysis and specialization for the
C Programming language .

[TECH-REPORT] PhD thesis .

[INSTITUTION] DIKU , University of Copenhagen/,

[DATE] May, 1994 .
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Information Extraction with Expectation Constraints

Adding constraints, we get correct results!
Without changing the model

[AUTHOR] Lars Ole Andersen .

[TITLE] Program analysis and specialization for the
C Programming language .

[TECH-REPORT] PhD thesis .

[INSTITUTION] DIKU , University of Copenhagen/,

[DATE] May, 1994 .

We introduce the Constrained Conditional Models formulation which allows:
Learning a simple model
Making decisions with a more complex model
Some of the structure imposes externally/declaratively

Accomplished by directly incorporating constraints to bias/re-rank decisions
made by the simpler model

PUTATION GROUP page 19 [l
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“local” models




y = argmax, ., W'o(x, y) + u'Clx, y)

Weight Vector for / ‘

“local” models o

Features, classifiers; log-
linear models (HMM, CRF)
or a combination




y = argmax, ., W'o(x, y) + u'Clx, y)

(Soft) constraints
component
Weight Vector for

“local” models o

Features, classifiers; log-
linear models (HMM, CRF)
or a combination




Constrained Conditional Models

y = argmax, . , W'o(x, y) + u'Clx, y)

Weight Vector for
“local” models

-

~

Penalty for violating
the constraint.

(Soft) constraints

\ component

Features, classifiers; log-
linear models (HMM, CRF)
or a combination

a “legal” assignment

How far y is from
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Constrained Conditional Models

y = argmax, . , W'o(x, y) + u'Clx, y)

Weight Vector for
“local” models

-

Penalty for violating

/ the constraint.

(Soft) constraints

\ component

How to solve?

Features, classifiers; log-
linear models (HMM, CRF)
or a combination

How far y is from
a “legal” assignment

This is an Integer Linear Program

Solving using ILP packages gives an exact

solution.

Cutting Planes, Dual Decomposition &
other search techniques are possible

Amortized ILP inference Scheme

How to train?
Training is learning the objective function

Decompose objective? Decouple? Train
Jointly?

How to exploit the structure to
minimize supervision?

New (joint and distributed algorithms

1: 20 ]




= Inference: given input X (a document, a sentence),

predict the best structurey ={y,,y,,...,y.} €Y (entities & relations)

[1 Assign values to they,,y,,...,y,, accounting for dependencies among y;s




Structured Prediction: Inference

Placing in context: a very high level view of what you will see next

Inference: given input X (a document, a sentence),

predict the best structurey ={y,,y,,...,y.} €Y (entities & relations)

Assign values to the y,,y,,...,y,, accounting for dependencies amongy.s
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Structured Prediction: Inference

Placing in context: a very high level view of what you will see next

Inference: given input X (a document, a sentence),

predict the best structurey ={y,,y,,...,y.} €Y (entities & relations)

Assign values to the y,,y,,...,y,, accounting for dependencies amongy.s

Inference is expressed as a maximization of a scoring function

y' =argmax, . y W' ¢ (x,y)
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Structured Prediction: Inference

Placing in context: a very high level view of what you will see next

Inference: given input X (a document, a sentence),

predict the best structurey ={y,,y,,...,y.} €Y (entities & relations)

Assign values to the y,,y,,...,y,, accounting for dependencies amongy.s
Inference is expressed as a maximization of a scoring function
y' =argmax, . w' @ (x,y) Joint features

on inputs and
outputs
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Structured Prediction: Inference

Placing in context: a very high level view of what you will see next

Inference: given input X (a document, a sentence),

predict the best structurey ={y,,y,,...,y.} €Y (entities & relations)

Assign values to the y,,y,,...,y,, accounting for dependencies amongy.s

Inference is expressed as a maximization of a scoring function

y' =argmax, . w' @ (x,y) Joint features
on inputs and
Feature Weights outputs

(estimated during learning)
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Structured Prediction: Inference

Placing in context: a very high level view of what you will see next

Inference: given input X (a document, a sentence),

predict the best structurey ={y,,y,,...,y.} €Y (entities & relations)

Assign values to the y,,y,,...,y,, accounting for dependencies amongy.s

Inference is expressed as a maximization of a scoring function

y' =argmax, . w' @ (x,y) Joint features
on inputs and
Set of allowed Feature Weights outputs

structures (estimated during learning)
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Structured Prediction: Inference

Placing in context: a very high level view of what you will see next

Inference: given input X (a document, a sentence),

predict the best structurey ={y,,y,,...,y.} €Y (entities & relations)

Assign values to the y,,y,,...,y,, accounting for dependencies amongy.s

Inference is expressed as a maximization of a scoring function

y' =argmax, . w' @ (x,y) Joint features
on inputs and
Set of allowed Feature Weights outputs

structures (estimated during learning)

Inference requires, in principle, touching all y € Y at decision time, when we
are given x € X and attempt to determine the besty € Y for it, given w
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Structured Prediction: Inference

Placing in context: a very high level view of what you will see next

Inference: given input X (a document, a sentence),

predict the best structurey ={y,,y,,...,y.} €Y (entities & relations)

Assign values to the y,,y,,...,y,, accounting for dependencies amongy.s

Inference is expressed as a maximization of a scoring function

y' =argmax, . w' @ (x,y) Joint features
on inputs and
Set of allowed Feature Weights outputs

structures (estimated during learning)

Inference requires, in principle, touching all y € Y at decision time, when we
are given x € X and attempt to determine the besty € Y for it, given w

For some structures, inference is computationally easy.
Eg: Using the Viterbi algorithm
In general, NP-hard (can be formulated as an ILP)
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m Learning: given a set of structured examples {(x,y)}

find a scoring function w that minimizes empirical loss.




Structured Prediction: Learning

Learning: given a set of structured examples {(x,y)}

find a scoring function w that minimizes empirical loss.

Learning is thus driven by the attempt to find a weight vector w such that
for each given annotated example (x;, y,):
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Structured Prediction: Learning

Learning: given a set of structured examples {(x,y)}
find a scoring function w that minimizes empirical loss.

Learning is thus driven by the attempt to find a weight vector w such that
for each given annotated example (x, y,):

Penalty for
Score of annotated Score of any . .. y
predicting other
structure — other structure
structure
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Structured Prediction: Learning

Learning: given a set of structured examples {(x,y)}
find a scoring function w that minimizes empirical loss.

Learning is thus driven by the attempt to find a weight vector w such that
for each given annotated example (x;, v.):

WTqb(X’iay’i) > WTQb(X?;,Y) A(y7Y'&)
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Structured Prediction: Learning

Learning: given a set of structured examples {(x,y)}
find a scoring function w that minimizes empirical loss.

Learning is thus driven by the attempt to find a weight vector w such that
for each given annotated example (x;, v.):

Vy WTQb(X?Z;y'i) > WTgb(X%Y) A(yay'&)
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Structured Prediction: Learning

Learning: given a set of structured examples {(x,y)}
find a scoring function w that minimizes empirical loss.

Learning is thus driven by the attempt to find a weight vector w such that
for each given annotated example (x;, v.):

Vy WTQb(X?Z;y'i) > WTgb(X%Y) A(yay'&)

We call these conditions the learning constraints.




Structured Prediction: Learning

Learning: given a set of structured examples {(x,y)}
find a scoring function w that minimizes empirical loss.

Learning is thus driven by the attempt to find a weight vector w such that
for each given annotated example (x, y,):

Vy WT¢(Xiayi) > wTé(X%Y) A(yay%)

We call these conditions the learning constraints.

In most learning algorithms used today, the update of the weight vector w
is done in an on-line fashion,

Think about it as Perceptron; this procedure applies to Structured Perceptron,
CRFs, Linear Structured SVM
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Structured Prediction: Learning

Learning: given a set of structured examples {(x,y)}
find a scoring function w that minimizes empirical loss.

Learning is thus driven by the attempt to find a weight vector w such that
for each given annotated example (x;, v.):

Vy WTé(Xiayi) > WTgb(X?hY) A(yay%)

We call these conditions the learning constraints.

In most learning algorithms used today, the update of the weight vector w
is done in an on-line fashion,

Think about it as Perceptron; this procedure applies to Structured Perceptron,
CRFs, Linear Structured SVM

W.l.0.g. (almost) we can thus write the generic structured learning
algorithm as follows:
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Structured Prediction: Learning Algorithm

For each example (x, v,)
Do: (with the current weight vector w)
Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndFor

)
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Structured Prediction: Learning Algorithm

For each example (x, v,)
Do: (with the current weight vector w)
—) Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndFor

)
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Structured Prediction: Learning Algorithm

For each example (x;, v,)
Do: (with the current weight vector w)
Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
) Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndFor

)
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Structured Prediction: Learning Algorithm

For each example (x, v,)
Do: (with the current weight vector w)
Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
—) Update w
Otherwise: no need to update w on this example
EndFor

)
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Structured Prediction: Learning Algorithm

In the structured case, prediction
For each example (x, v,) (inference) is often intractable but

Do: (with the current weight vector w) | heeds to be done many times
Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndFor
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Structured Prediction: Learning Algorithm |
Solution I:

decompose the
scoring function to

Do:

Predict: perform Inference with the current weight vector

) _ T T
Yy’ = argmax, ¢ y Weasy' Peasy ( %,¥) + Wharo' Puaro ( Xi 1Y)
Check the learning constraint

Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w

Otherwise: no need to update w on this example
EndDo

)
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Structured Prediction: Learning Algorithm |
Solution I:

decompose the
scoring function to

Do:

Predict: perform Inference with the current weight vector

) _ T T
Yy’ = argmax, ¢ y Weasy' Peasy ( %,¥) + Wharo' Puaro ( Xi 1Y)
Check the learning constraint

Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w

Otherwise: no need to update w on this example
EndDo

EASY: could be feature functions that correspond to an HMM, a linear CRF, or

even @pacy (X,¥) = ¢(x), omiting dependence on y, corresponding to classifiers.
May not be enough if the HARD part is still part of each inference step.

,f"__ 'i
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Structured Prediction: Learning Algorithm | solution II: Disregard

some of the
dependencies:
assume a simple

For each example (x, ;) model.

Do:
Predict: perform Inference with the current weight vector

) _ T T
Yy’ = argmax, ¢ y Weasy' Peasy ( %,¥) + Wharo' Puaro ( Xi 1Y)
Check the learning constraint

Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w

Otherwise: no need to update w on this example
EndDo
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Structured Prediction: Learning Algorithm | solution II: Disregard

some of the
dependencies:
assume a simple

For each example (x, ;) model.

Do:
Predict: perform Inference with the current weight vector

’ _ T
Yy =argmax, ¢ y Weasy' Peasy ( Xi 1Y) + Wyars
Check the learning constraint

Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w

Otherwise: no need to update w on this example
EndDo
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Structured Prediction: Learning Algorithm

For each example (x, v,)
Do:
Predict: perform Inference with the current weight vector

Y/ = argmax, ¢ y Weasy' Peasy ( Xi,¥) + Wyarp' Paro ( X;5Y)
Check the learning constraint
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndDo

)
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Structured Prediction: Learning Algorithm

Solution Ill: Disregard some of the dependencies

For each example (x;, v. , . . .
ple (x; ) during learning; take into account at decision time

Do:
Predict: perform Inference with the current weight vector

’ _ T
Yy =argmax, ¢ y Weasy' Peasy ( Xi 1Y) + Wyars
Check the learning constraint

Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndDo

y; =argmax, . y Weasy' @Peasy ( Xi,Y) + Wharo' Puaro ( Xi 1Y)
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Structured Prediction: Learning Algorithm

Solution Ill: Disregard some of the dependencies

For each example (x;, v. , . . .
ple (x; ) during learning; take into account at decision time

Do:
Predict: perform Inference with the current weight vector

’ _ T
Yy =argmax, ¢ y Weasy' Peasy ( Xi 1Y) + Wyars
Check the learning constraint

Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndDo

y; =argmax, . y Weasy' @Peasy ( Xi,Y) + Wharo' Puaro ( Xi 1Y)

This is the most commonly used solution in NLP today
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y =argmax, . y W'o(x, y)




y =argmax, . y W'o(x, y)




y =argmax, . y W'o(x, y)

|

Features, classifiers; log-
linear models (HMM, CRF)
or a combination




y =argmax, . y W'o(x, y)

Weight Vector for / ‘

“local” models o

Features, classifiers; log-
linear models (HMM, CRF)
or a combination




Constrained Conditional Models

y=argmax, .y W o(x, y) + u'Clx, y) Knowledge component:

(Soft) constraints
Weight Vector for

“local” models

Features, classifiers; log-
linear models (HMM, CRF)
or a combination
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Constrained Conditional Models

Penalty for violating

/ the constraint.

y=argmax, .y W o(x, y) + u'Clx, y) Knowledge component:

(Soft) constraints
Weight Vector for \

“local” models

Features, classifiers; log- How fary is from

linear models (HMM, CRF) a “legal/expected” assignment
or a combination




Constrained Conditional Models

Penalty for violating

/ the constraint.

y=argmax, .y W o(x, y) + u'Clx, y) Knowledge component:

(Soft) constraints
Weight Vector for \

“local” models

Features, classifiers; log- How fary is from

linear models (HMM, CRF) a “legal/expected” assignment
or a combination

Training: learning the objective function (w, u)

Decouple? Decompose? Force u to model hard constraints?
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Constrained Conditional Models

Penalty for violating

/ the constraint.

— T T
y =argmax, . y W o(x, y) +u'C(x, y) Knowledge component:

(Soft) constraints
Weight Vector for \

“local” models

Features, classifiers; log- How fary is from

linear models (HMM, CRF) a “legal/expected” assignment
or a combination

Training: learning the objective function (w, u)

Decouple? Decompose? Force u to model hard constraints?

A way to push the learned model to satisfy our output expectations (or
expectations from a latent representation)

[CoDL, Chang, Ratinov, Roth (07, 12); Posterior Regularization, Ganchev et. al
(10); Unified EM (Samdani & Roth(12)]
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Constrained Conditional Models

Penalty for violating

/ the constraint.

arg Iimax E 1[yp_yp]WT(I>p (=, ¥p)

ye peTl L. Knowledge component:
(Soft) constraints
Weight Vector for / “ \
“local” models o
Features, classifiers; log- How far vy is from
linear models (HMM, CRF) a “legal/expected” assignment

or a combination

Training: learning the objective function (w, u)

Decouple? Decompose? Force u to model hard constraints?

A way to push the learned model to satisfy our output expectations (or
expectations from a latent representation)

[CoDL, Chang, Ratinov, Roth (07, 12); Posterior Regularization, Ganchev et. al
(10); Unified EM (Samdani & Roth(12)]
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Constralned Condltlonal MOddS Any MAP problem w.r.t. any probabilistic

model, can be formulated as an Integer
Linear Program (ILP)  Roth+ 04, Taskar 04]

arg Iimax E 1[yp_yp]WT(I>p (=, ¥p)

ye peTl L. Knowledge component:
(Soft) constraints
Weight Vector for / ‘ \
“local” models o
Features, classifiers; log- How far vy is from
linear models (HMM, CRF) a “legal/expected” assignment

or a combination

Training: learning the objective function (w, u)

Decouple? Decompose? Force u to model hard constraints?

A way to push the learned model to satisfy our output expectations (or
expectations from a latent representation)

[CoDL, Chang, Ratinov, Roth (07, 12); Posterior Regularization, Ganchev et. al
(10); Unified EM (Samdani & Roth(12)]
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Constralned Condltlonal Moc E|S Any MAP problem w.r.t. any probabilistic

model, can be formulated as an Integer
Linear Program (ILP)  Roth+ 04, Taskar 04]

Variables are “parts”

arg Iimax E 1[yp_yp]WT(I>p (=, ¥p)

ye peTl L. Knowledge component:
(Soft) constraints
Weight Vector for / “ \
“local” models o
Features, classifiers; log- How far vy is from
linear models (HMM, CRF) a “legal/expected” assignment

or a combination

Training: learning the objective function (w, u)

Decouple? Decompose? Force u to model hard constraints?

A way to push the learned model to satisfy our output expectations (or
expectations from a latent representation)

[CoDL, Chang, Ratinov, Roth (07, 12); Posterior Regularization, Ganchev et. al
(10); Unified EM (Samdani & Roth(12)]
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Constralned Condltlonal Moc E|S Any MAP problem w.r.t. any probabilistic

model, can be formulated as an Integer
Linear Program (ILP)  Roth+ 04, Taskar 04]

Variables are “parts”

arg Iimax E 1[yp_yp]WT(I>p (=, ¥p)

ye peTl L. Knowledge component:
(Soft) constraints
Weight Vector for / ‘ \
“local” models o
Features, classifiers; log- How far vy is from
linear models (HMM, CRF) a “legal/expected” assignment

or a combination

Training: learning the objective function (w, u)

Decouple? Decompose? Force u to model hard constraints?

A way to push the learned model to satisfy our output expectations (or
expectations from a latent representation)

[CoDL, Chang, Ratinov, Roth (07, 12); Posterior Regularization, Ganchev et. al
(10); Unified EM (Samdani & Roth(12)]

‘The benefits of thinking about it as an ILP are conceptual and computational.
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y= argmaxy ey WT¢(XI y) + UTC(X, y)

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.




The second part

y = argmax, . y WT¢(X, y) + uTC(x, V)4 of the tutorial is

on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.




The second part
y = argmax, u'C(x, y) of the tutorial is
on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.




j% The second part
- T T of the tutorial is
= argmax w'o(x, v) + uTCl(x

y & ye Q( ! Y) ( ! on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.




Examples: CCM Formulations The third part of the tutorial is on how to

do inference
The second part

on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.
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Examples: CCM Formulations The third part of the tutorial is on how to

do inference

The second part

on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.

Formulate NLP Problems as ILP problems (inference may be done otherwise)
1. Sequence tagging (HMM/CRF + Global constraints)
2. Sentence Compression (Language Model + Global Constraints)

3. SRL (Independent classifiers + Global Constraints)
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Examples: CCM Formulations The third part of the tutorial is on how to

do inference

The second part

on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.

Formulate NLP Problems as ILP problems (inference may be done otherwise)
mmmmp 1. Sequence tagging (HMM/CRF + Global constraints)
2. Sentence Compression (Language Model + Global Constraints)
3. SRL (Independent classifiers + Global Constraints)
Sequential Prediction Knowledge/Linguistics Constraints
HMM/CRF based: Cannot have both A states and B states
Argmax 2. \. in an output sequence.

ij IJ
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Examples: CCM Formulations The third part of the tutorial is on how to

do inference

The second part

on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.

Formulate NLP Problems as ILP problems (inference may be done otherwise)
=P  ].Sequence tagging (HMM/CRF + Global constraints)
mmmp 2. Sentence Compression (Language Model + Global Constraints)
3. SRL (Independent classifiers + Global Constraints)
Sentence Knowledge/Linguistics Constraints
Compression/Summarization:
Language Model based: If a modifier chosen, include its head
Argmax 2, A, Xiy If verb is chosen, include its arguments

Qocpiye CompuraTion Group
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Examples: CCM Formulations The third part of the tutorial is on how to

do inference

The second part

on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.

Formulate NLP Problems as ILP problems (inference may be done otherwise)

=P  ].Sequence tagging (HMM/CRF + Global constraints)

mmmp 2. Sentence Compression (Language Model + Global Constraints)

mmmp 3. SRL (Independent classifiers + Global Constraints)
Sentence Knowledge/Linguistics Constraints
Compression/Summarization:
Language Model based: If a modifier chosen, include its head

Argmax 2, A, Xiy If verb is chosen, include its arguments
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Examples: CCM Formulations The third part of the tutorial is on how to

do inference

The second part

on how to learn

While ¢(x, y) and C(x, y) could be the same; we want C(x, y) to express
high level declarative knowledge over the statistical models.

Formulate NLP Problems as ILP problems (inference may be done otherwise)
mmmmp 1. Sequence tagging (HMM/CRF + Global constraints)
mmmp 2. Sentence Compression (Language Model + Global Constraints)
mmmp 3. SRL (Independent classifiers + Global Constraints)

Constrained Conditional Models Allow:
Decouple complexity of the learned model from that of the desired output
Learn a simple model (multiple; pipelines); reason with a complex one.

Accomplished by incorporating constraints to bias/re-rank global decisions
to satisfy (minimally violate) expectations.
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Semantic Role Labeling (SRL)

I left my pearls to my daughter in my will
l left [my pearls],, to my daughter . [In my will],,  oc -

Leaver
Al Things left
Benefactor
AM-LOC Location

I left my pearls to my daughter in my will

_")
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Semantic Role Labeling (SRL) Archetypical Information Extraction
Problem: E.g., Concept Identification

and Typing, Event Identification, etc.

I left my pearls to my daughter in my will
l left [my pearls],, to my daughter . [In my will],,  oc -

Leaver
Al Things left
Benefactor
AM-LOC Location

I left my pearls to my daughter in my will
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m |dentify argument candidates
1 Pruning [Xue&Palmer, EMNLP’04]
1 Argument Identifier
= Binary classification
m Classify argument candidates
1 Argument Classifier
= Multi-class classification
m Inference
[1 Use the estimated probability distribution given
by the argument classifier
[1 Use structural and linguistic constraints

1 Infer the optimal global output




Algorithmic Approach

1 I left my nice pearls to her

[ candidate arguments ——

‘ |ldentify argument candidates
Pruning [Xue&Palmer, EMNLP’04]
Argument ldentifier

Binary classification

Classify argument candidates

Argument Classifier @

Multi-class classification

I left my nice pearls to her

Inference T IR T T

Use the estimated probability distribution given

by the argument classifier

Use structural and linguistic constraints ——

Infer the optimal global output
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Algorithmic Approach

1 left my nice pearls to her
L L L L
1 ] 1 1

™=

|ldentify argument candidates
Pruning [Xue&Palmer, EMNLP’04]
Argument ldentifier

=]

Binary classification —

- Classify argument candidates

Argument Classifier @

Multi-class classification

1 left my nice pearls to her

Inference

Use the estimated probability distribution given

by the argument classifier —

Use structural and linguistic constraints
Infer the optimal global output

)
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Algorithmic Approach

1 left my nice pearls to her

|ldentify argument candidates oL
Pruning [Xue&Palmer, EMNLP’04] —
Argument ldentifier —_

Binary classification —

Classify argument candidates

Argument Classifier @

Multi-class classification

1 left my nice pearls to her

mm) = Inference —
Use the estimated probability distribution given

by the argument classifier —

Use structural and linguistic constraints
Infer the optimal global output @

| to her

)
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Algorithmic Approach

1 left my nice pearls to her

|ldentify argument candidates (L ot
Pruning [Xue&Palmer, EMNLP’04] ——
Argument Identifier _—_
Binary classification —

Classify argument candidates

Argument Classifier @

Multi-class classification

1 left my nice pearls to her

mm) = Inference —
Use the estimated probability distribution given

by the argument classifier —

Use STV‘IIP‘I’IIV“)I Aand |inn||icfic Constralnts

One inference
Infert problem for each tPut @
verb predicate. —

| to her
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Algorithmic Approach

1 left my nice pearls to her

|ldentify argument candidates (Lt ot
Pruning [Xue&Palmer, EMNLP’04] ——
Argument Identifier —
Binary classification = —

Classify argument candidates

Argument Classifier @

Multi-class classification

1 left my nice pearls to her

mm) = Inference —
Use the estimated probability distribution given
argmax Za,t ya’t Ca’t = Za,t 1a=t Ca=t
Subject to:
e One label per argument: >, y&t = @
e No overlapping or embedding = —
e Relations between verbs and arguments,.... ! o her
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Algorithmic Approach

1 left my nice pearls to her

|ldentify argument candidates oL
Pruning [Xue&Palmer, EMNLP’04] —
Argument ldentifier —_

Binary classification

Variable y?! indicates whether candidate
Ny argument a is assigned a label t.
Argument Classifier c®! is the corresponding model score

Multi-class classification

mm) = Inference

Use the estimated p#goability distribution given

Classify argument candidates

1 left my nice pearls to her

argmax Za,t ya’t Ca’t = Za,t 1a=t Ca=t

Subject to:

e One label per argument: >, y&t = @
 No overlapping or embedding = —

| to her

e Relations between verbs and arguments,....
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Algorithmic Approach
No duplicate V%, Z Liy;=yy =1

argument classes  ycy

ldentify argument candid| n—1 Unique labels
. <
Pruning [Xue&Palmer, EM vy e, ; Ly=yy =1
Argument Identifier n—1 1

Binary classification Vy € Vg, Z liy,—y=“R-Ax"} < Z Ly, —<Ax™)
. . =0 =0
Classify argument candidi ? -

J
Argument Classifier Vi, y € Vo, 1y —y—scax’y < Z 1ry,—<Ax”)
Multi-class classification S| E—
e my nice pearis o ner
mm) = Inference =

Use the estimated p#goability distribution given
argmax Za,t ya’t Ca’t = Za,t 1a=t Ca=t
Subject to:
e One label per argument: >, y&t = @

e No overlapping or embedding
e Relations between verbs and arguments,.... ' to her
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Algorithmic Approach

Learning Based Java: allows a developer
to encode constraints in First Order
Logic; these are compiled into linear

Identify argument candidates inequalities automatically.

Pruning [Xue&Palmer, EMNLP’04]
Argument ldentifier

Binary classification

Variable y?! indicates whether candidate
Ny argument a is assigned a label t.
Argument Classifier c®! is the corresponding model score

Multi-class classification

mm) = Inference

Use the estimated p#goability distribution given

Classify argument candidates

1 left my nice pearls to her

argmax 2., y*tc*t=%, 1 c. —
Subject to:
e One label per argument: >, y&t = @

e No overlapping or embedding
e Relations between verbs and arguments,.... ' to her
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Algorithmic Approach

Learning Based Java: allows a developer
to encode constraints in First Order
Logic; these are compiled into linear

Identify argument candidates inequalities automatically.

Pruning [Xue&Palmer, EMNLP’04]
Argument ldentifier

Binary classification

Variable y?! indicates whether candidate
Ny argument a is assigned a label t.
Argument Classifier c®! is the corresponding model score

Multi-class classification

mm) = Inference

Use the estimated p#goability distribution given

Classify argument candidates

1 left my nice pearls to her

argmax 2., y*tc*t=%, 1 c. —
Subject to:
e One label per argument: >, y&t = @

e No overlapping or embedding
e Relations between verbs and arguments,.... ' to her

. Use the pipeline architecture’s simplicity while maintaining uncertainty: keep
{ probablllty dlstrlbutlons over deC|5|ons & use global inference at decision time.
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Semantic Role Labeling (SRL)
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Semantic Role Labeling (SRL)
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Constraints

No duplicate argument classes

Reference-Ax

Continuation-Ax

If there is an Reference-Ax phrase, there is an Ax

If there is an Continuation-x phrase, there is an Ax before it

Many other possible constraints:

Unique labels

No overlapping or embedding

Relations between number of arguments; order constraints

If verb is of type A, no argument of type B
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Constraints

Any Boolean rule can be encoded as a set

No duplicate argument classes : . "
of linear inequalities.

Reference-Ax If there is an Reference-Ax phrase, there is an Ax

Continuation-Ax If there is an Continuation-x phrase, there is an Ax before it

m Many other possible constraints:
Unique labels
No overlapping or embedding
Relations between number of arguments; order constraints
If verb is of type A, no argument of type B

e CompruTaTion GrOUP

OF ILLINOIS AT URBANA-CHAMPAIGN

.ﬁ
(1.}
—
-
)-(



Constraints

Any Boolean rule can be encoded as a set

No duplicate argument classes : . "
of linear inequalities.

Reference-Ax If there is an Reference-Ax phrase, there is an Ax

Continuation-Ax If there is an Continuation-x phrase, there is an Ax before it

[ Universally quantified rules

m Many other possible constraints:
Unique labels
No overlapping or embedding
Relations between number of arguments; order constraints
If verb is of type A, no argument of type B




Constraints The tutorial web page will point to material
on how to write down linear inequalities for
various logical expressions.

Any Boolean rule can be encoded as a set

No duplicate argument classes : . "
of linear inequalities.

Reference-Ax If there is an Reference-Ax phrase, there is an Ax

Continuation-Ax If there is an Continuation-x phrase, there is an Ax before it

m Many other possible constraints:
Unique labels
No overlapping or embedding
Relations between number of arguments; order constraints
If verb is of type A, no argument of type B
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Constraints The tutorial web page will point to material
on how to write down linear inequalities for
various logical expressions.

Any Boolean rule can be encoded as a set

No duplicate argument classes : . "
of linear inequalities.

Reference-Ax If there is an Reference-Ax phrase, there is an Ax
Continuation-Ax If there is an Continuation-x phrase, there is an Ax before it
m Many other possible constraints: Learning Based Java: allows a developer

to encode constraints in First Order
Logic; these are compiled into linear
No overlapping or embedding inequalities automatically.

Relations between number of arguments; order constraints

Unique labels

If verb is of type A, no argument of type B
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Constraints The tutorial web page will point to material
on how to write down linear inequalities for
various logical expressions.

Any Boolean rule can be encoded as a set

No duplicate argument classes : . "
of linear inequalities.

n—1

v’y S ya Z ]-{y.,-=y} S 1
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m Many other possible constraints: Learning Based Java: allows a developer
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Logic; these are compiled into linear
No overlapping or embedding inequalities automatically.

Relations between number of arguments; order constraints

Unique labels

If verb is of type A, no argument of type B
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Constraints The tutorial web page will point to material
on how to write down linear inequalities for
various logical expressions.

Any Boolean rule can be encoded as a set

No duplicate argument classes : . "
of linear inequalities.
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v’y S ya Z ]-{y.,-=y} S 1

i=0
Reference-Ax If there is an Reference-Ax phrase, there is an Ax

mn—1 n—1

Yy € Vg, Z Liy,=y=“R-Ax"} = Z Liy=«Ax"}

1=0 1=0

Continuation-Ax If there is an Continuation-x phrase, there is an Ax before it

m Many other possible constraints: Learning Based Java: allows a developer
to encode constraints in First Order

Logic; these are compiled into linear
No overlapping or embedding inequalities automatically.

Relations between number of arguments; order constraints

Unique labels

If verb is of type A, no argument of type B
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Constraints The tutorial web page will point to material
on how to write down linear inequalities for
various logical expressions.

Any Boolean rule can be encoded as a set

No duplicate argument classes : . "
of linear inequalities.

n—1

v’y S ya Z ]-{y.,-=y} S 1

i=0
Reference-Ax If there is an Reference-Ax phrase, there is an Ax

mn—1 n—1

Vy € Vr, Z Ly, =y=R-Ax"} < Z Lry,=«ax”)

1=0 1=0

Continuation-Ax If there is an Continuation-x phrase, there is an Ax before it

\\._/j y E yC" 1 '{?f_';' :?;:‘;C-AX:: ]- g Z 1{?;.,::“1%}{” }
i=0
m Many other possible constraints: Learning Based Java: allows a developer
to encode constraints in First Order
Logic; these are compiled into linear
No overlapping or embedding inequalities automatically.

Relations between number of arguments; order constraints

Unique labels

If verb is of type A, no argument of type B
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SRL: Posing the Problem

n—1
maximize E E Ay Ly =y}

1=0 yey

where Ay = A F(x,y) = Ay

- F(x)
subject to
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SRL: Posing the Problem

n—1
maximize Z Z Ay Ly =y}
1=0 yey
where Ay = A F(x,y) =X, - F(x)
subject to ,
VZF Z l{yi:y} =1
yey
n—1
Vy e, Z Ly=yy =1
1=0
n—1 n—1

A bomb [A1] |
car ]
bomb ]
that bomb
(Reference) .
[R-A1]
exploded | Viexplode | |
outside location |
the [am-Loc] R
U.S. [
military temporal [
base [AM-TMP] R
in location |
Beniji [am-Loc] N
killed
11
Iraqi
citizens
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n—1

HMM : y" = avgmax P(yo) P(wolyo) 11 Pwilyi-)P(zily:)
=1
Z/o yl|y0 y2|y1 y3|y2 y4|y3

1111

P(xolyo) Plz1|lyr)  Plzaly2)  Plxslys)  P(ra|ys)




n—1

HMM : y" = avgmax P(yo) P(wolyo) 11 Pwilyi-)P(zily:)
=1
yo yl|yo yz|yl ys|y2 Z-I4|ys

Here, y’s are labels; x’s are observations. 1 l l 1

P(xolyo) Plz1|lyr)  Plzaly2)  Plxslys)  P(ra|ys)




Example 2: Sequence Tagging

n—1

HMM : y" = argmax P(yo) P(zolyo) [ [ P(wilyi—1)P(x:ly:)
yey i=1
P(yo) Plyilyo) P(y2ly1)  Plysly2)  Plyalys)

Here, y’s are labels; x’s are observations.

The ILP’s objective function must l l l l l

include all entries of the
Conditional Probability Table. P(xolyo) P(zilyr) Plxalyz) Plaslys)  P(2alys)
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Example 2: Sequence Tagging

77— 1

HMM : y* = argmax P(yo)P(xo|yo) H P(yilyi—1)P(xi|y:)
yey i=1
P(yo) P(y1lyo) P(yzly1)  P(ysly2)  P(yalys)

Here, y’s are labels; x’s are observations.

The ILP’s objective function must l l l l l

include all entries of the
Conditional Probability Table. P(xolyo) P(zilyr) Plxalyz) Plaslys)  P(2alys)

Example: the
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Example 2: Sequence Tagging

77— 1

HMM : y* = argmax P(yo) P(xolyo) | [ P(wilyi—1)P(ailys)
yey i=1
P(yo) Plyilyo) P(y2ly1)  Plysly2)  P(yalys)

Here, y’s are labels; x’s are observations.

The ILP’s objective function must l l l l l

include all entries of the
Conditional Probability Table. P(xolyo) P(zilyr) Plxalyz) Plaslys)  P(2alys)

Example: the

Every edge is a Boolean variable
that selects a transition CPT entry. < % % % %
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Example 2: Sequence Tagging

77— 1

HMM : y* = argmax P(yo) P(xolyo) | [ P(wilyi—1)P(ailys)
yey i=1
P(yo) Plyilyo) P(y2ly1)  Plysly2)  P(yalys)

Here, y’s are labels; x’s are observations.

The ILP’s objective function must l l l l l

include all entries of the
Conditional Probability Table. P(xolyo) P(zilyr) Plxalyz) Plaslys)  P(2alys)

Example: the
Every edge is a Boolean variable
that selects a transition CPT entry.
They are related: if we choose
Yo=D
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Example 2: Sequence Tagging

n—1

HMM : y" = argmax P(yo) P(zolyo) [ [ P(wilyi—1)P(x:ly:)
yey i=1
P(yo) Plyilyo) P(y2ly1)  Plysly2)  Plyalys)

Here, y’s are labels; x’s are observations.

The ILP’s objective function must l l l l l

include all entries of the

Conditional Probability Table. P(xolyo) P(zilyr) Plxalyz) Plaslys)  P(2alys)
Example: the

Every edge is a Boolean variable

that selects a transition CPT entry.

They are related: if we choose

Yo =D then we must choose an edge

Yo=DA y,=7.
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Example 2: Sequence Tagging

n—1

HMM : y" = argmax P(yo) P(zolyo) [ [ P(wilyi—1)P(x:ly:)
yey i=1
P(yo) Plyilyo) P(y2ly1)  Plysly2)  Plyalys)

Here, y’s are labels; x’s are observations.

The ILP’s objective function must l l l l l

include all entries of the
Conditional Probability Table. P(xolyo) P(zilyr) Plxalyz) Plaslys)  P(2alys)

Example: the

man saw the dog
Every edge is a Boolean variable D D D D D
that selects a transition CPT entry.
N N N N
They are related: if we choose A A A A
Yo = D then we must choose an edge
Vv Y, \Y Vv Vv

Yo=DA y,=7.

=2

>

Every assignment to the y’s is a path.
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H M M . Example: the man saw the dog

ol N7 N7 N7 N7
y* = argmax P(yo) P(woly0) 1 Pwilyi-1) P(aily:) A\”{“}Q{“}\"{“}\"{
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Example 2: Sequence Tagging

H M M : Example: the man saw the dog

D D D D D
n—1

y* = argmax P(yo) P(zolyo) [ [ P(wilyi—1)P(ily:) N N N N N
yey i=1

A A A A A

As an ILP: v v v v v

n—1
IMaximize Z }“U-?Jl{ynzy} + : : yz )"i-.',%y’l{ys:y A Yi-1=y"}
yey i=1 yeYy' ey

subject to
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Example 2: Sequence Tagging
HMM Example:

n—1
y* = argmax P(yo)P(zolyo) | [ P(wilyi—1)P(a:ly:) < % % % %
yey i=1
As an ILP:

n—1
maximize Z Aoy L{yo=y} T y yj yz Aty Hyi=y A yir=y'} Aoy = log(P(y)) + log(P(woly))

yey 1=1 yeyy'ey iy = 10%(13('1}‘?}!)) + IOQ(P(Q?-i‘if))

subject to

Learned Parameters
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Example 2: Sequence Tagging

H M M: Example:

17— 1
y* = argmax P(yo) P(zolyo) [ | P(wilyi-1)P(xily:)
yey =1
Inference Varlables
As an ILP:

maximize Z Ao. 9’1{9(1 y} T y y‘ Y Ai v, y’l{ya y A yio1=y'} Aoy = log(P(y)) + log(P(xoly))

yey i=1 yeYy' €y iy = log(P(yly")) + log(P(z;]y))

subject to
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HMM Example:
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Example 2: Sequence Tagging
HMM Example:

n—1
y* = argmax P(yo)P(zolyo) | [ P(wilyi—1)P(a:ly:) < % % % %
yey i=1
As an ILP:

n—1
maximize Z Aoy L{yo=y} T y yj yz Aty Hyi=y A yir=y'} Aoy = log(P(y)) + log(P(woly))
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Example 2: Sequence Tagging
HMM Example:

n—1
y* = argmax P(yo)P(zolyo) | [ P(wilyi—1)P(a:ly:) < % % % %
yey i=1
As an ILP:

maximize Z Ao, 9’1{9(1 y} T y y‘ Y A vy, grl{ya YA yio1=y'} Ao,y = log(P(y)) + log(P(zoly))

yey =l yeYy'ey iy = log(P(yly")) + log(P(xz;|y))

subject to

Liyo=snnry =1
Hyo=vB"y =1
Liyo=«gy =1

« ']
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Example 2: Sequence Tagging

H M M: Example:

n—1
y" = argmax P(yo)P(zo|yo) H P(yilyi—1)P(xily:) < % % % %
yey i=1
As an ILP:

n—1
maximize Z Moo=yt + D0 D D M L=y A o=y} Aoy = log(P(y)) + log(P(woly))

yey i=lyeyy'ey Aiy,y = log(P(yly")) + log(P(xily))
subject to B
Z Lyo=yy =1 Unique label for each word
yey
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Example 2: Sequence Tagging

H M M: Example:

n—1
y* = argmax P(yo)P(zolyo) | [ P(wilyi—1)P(a:ly:) < % % % %
yey i=1
As an ILP:

maximize Z Ao, 9’1{9(1 y} T y y‘ Y A vy, grl{ya YA yio1=y'} Ao,y = log(P(y)) + log(P(zoly))

yey i=lyeyy'ey Aiy,y = log(P(yly")) + log(P(xily))
subject to
Z Lyo=yy =1 Unique label for each word
yey
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Example 2: Sequence Tagging

H M M . Example:

n—1
y* = argmax P(yo)P(zolyo) | [ P(wilyi—1)P(a:ly:) < % % % %
yey i=1
As an ILP:

n—1
maximize Z Aoy L{yo=y} T y yj yz Aty Hyi=y A yir=y'} Aoy = log(P(y)) + log(P(woly))

yey i=lyeyy'ey iy = 10%(13('1}‘31!)) + log(P(z;ly))
subject to :
Z Liyo=yy =1 Unique label for each word
yey
l{y(]:;;NNH} = 1 1{?}(]:“DT'” A :UIZ“JJ”} — 1
1{yU:::DTn A y]:::JJn} = 1 1{y1:uNN3: A y.z:;;\,*Bn} — 1
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Example 2: Sequence Tagging

H M M . Example: the man saw the dog

o // \\// \\// <7
y" = argmax P(yo) P(zo|yo) H P(yilyi—1)P(xily:) Q%\y!;
yey i1 QL7
As an ILP:
n—1
maximize Z Ao,y L{yo=yy + y: y: y: Ay Wyi=y A yio1=y'} Aoy = log(P(y)) + log(P(xo|y))
yey =1 yeyy'ey Aiy,y = log(P(yly")) + log(P(z:ly))
subject to
> Nyo=yy =1 Unique label for each word
yey
VY, Lyo=yy = Hyo=y A y1=y'} |
i y;y ’ Edges that are chosen
‘v’y?i > 1 Z l{yi—1=y" Avyi=y} = Z 1{311':’9 Ayit1=y"} must form a path
y'ey y'ey 3
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Example 2: Sequence Tagging

H M M . Example: th

e man saw the dog
1 D D D D D
y' = argrrjl/fix P(yo)P(xo|yo) H P(yilyi—1)P(xi|y;) N N N N N
Ye = A A A A A
As an ILP: v v v v v

n—1
maximize Z Aoy L{yo=y} T : yj yj Aty Hyi=y A yir=y'} Aoy = log(P(y)) + log(P(woly))
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subject to
Z Lyo=yy =1 Unique label for each word
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- _ [ must form th
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y'ey y''ey
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Example 2: Sequence Tagging

H M M . Example: the

man saw the dog
1 D D D D D

y' = argﬂjl/fix P(yo)P(xolyo) H P(yilyi—1)P(xi|y;) N N N N N
Ye = A A A A A

As an ILP: v v v v v

n—1
maximize Z Moo=yt + D0 D0 D Mww L=y A o=y} Aoy = log(P(y)) + log(P(woly))

yey =l yeYy'ey iy’ = log(P(yly")) + log(P(x;ly))
subject to
Z Lyo=yy =1 Unique label for each word
yey
Yy, Lyo=yy = Z Lyo=y n y1=y}
Y EY Edges that are chosen
: _ - must form th
Vy,i > 1 Z Ly im A iy} = Z Ly A pies ') ust form a pa
y'ey y'ey 3
nn—1
Liyo=sv» }+ZZm 1=y Ayi=v7y 2 1 There must be a verb!
i=1 yey
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Example 2: Sequence Tagging

H M M . Example: the

man saw the dog
1 D D D D D

y' = argﬂjl/fix P(yo)P(xolyo) H P(yilyi—1)P(xi|y;) N N N N N
Ye = A A A A A

As an ILP: v v v v v

n—1
maximize Z Aoy L{yo=y} T y: yj y: Aty Hyi=y A yir=y'} Aoy = log(P(y)) + log(P(woly))

yey =1 yeyy'ey Aiy,y = log(P(yly")) + log(P(xily))
subject to Z | |
Hyo=y} = '
Without additional constraints | ¢y i Unigue label for each word

the ILP formulation of an

Yy, liy=yy = 11{:1 1=y’ |
HMM is totally unimodular S Hwo=y) ?% to=y A=y} Edges that are chosen
. _ " must form th
Yy, i\ > 1 Z Ly im A iy} = Z Ly A pies ') ust form a pa
y'ey Y’ €Y |
n—1
Liyo=svry + Z Z Ly =y A yi=svry 2 1 There must be a verb!
i=1 yey
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Example 2: Sequence Tagging

H M M . Example: the

man saw the dog
) D D D D D
y* = argmax P(yo) P(zolyo) [ | P(wilyi-1)P(xily:) N N N N N
yey i=1
A A A A A
As an ILP: v v v v v

n—1
maximize Z Aoy L{yo=y} T y yj yz Aty Hyi=y A yir=y'} Aoy = log(P(y)) + log(P(woly))

yey =1 yeyy'ey Ay = log(P(yly')) + log(P(zi]y))
subject to Z 1 |
Hyo=y} — - '
Without additional constraints | ¢y i Unigue label for each word

the ILP formulation of an

Yy, 11 =y} = 11{:-? 1=y’ |
HMM is totally unimodular ¥ Hw=y} ?% o=y h =y} Edges that are chosen
: _ [ must form a path
Yy, i > 1 Z Liyii=y' Ays=y} = Z Lyi=y A yisr=y") P
y'ey y'ey |
Liyo= V}+ZZHy1 1=y Ay=v7} 2 1 There must be a verb!

i=1 yey

[Roth & Yih, ICML05] discuss training paradigms for HMMs and CRFs,

when augmented with additional knowledge
NYPPYE COMPUTATION GROUP 241
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m We have seen three different constraints in this example
1 Unique label for each word
1 Chosen edges must form a path
[1 There must be a verb

m All three can be expressed as linear inequalities

m In terms of modeling, there is a difference
1 The first two define the output structure (in this case, a sequence)

1 The third one adds knowledge to the problem




Constraints

m We have seen three different constraints in this example
1 Unique label for each word
1 Chosen edges must form a path
[1 There must be a verb

m All three can be expressed as linear inequalities
A conventional

model
® In terms of modeling, there is a difference
1 The first two define the output structure (in this case, a sequence)

1 The third one adds knowledge to the problem




Constraints

We have seen three different constraints in this example
Unique label for each word
Chosen edges must form a path
There must be a verb

All three can be expressed as linear inequalities
A conventional

model
In terms of modeling, there is a difference
The first two define the output structure (in this case, a sequence)
The third one adds knowledge to the problem

In CCMs, knowledge is an integral
part of the modeling

wpye CompuTaTiONn GRrROUP
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Learning and Inference in Structured Prediction

Part 1: Introduction to Structured Prediction (60min)
Motivation
Examples:
NE + Relations
Vision
Additional NLP Examples
Problem Formulation

Constrained Conditional Models: Integer Linear Programming
Formulations

‘ Initial thoughts about learning

Learning independent models

Constraints Driven Learning
Initial thoughts about Inference

Amortized Inference

)
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Constrained Conditional Models—ILP Formulations

Have been shown useful in the context of many NLP problems
[Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL ...]

Summarization; Co-reference; Information & Relation Extraction; Event
Identifications and causality ; Transliteration; Textual Entailment; Knowledge
Acquisition; Sentiments; Temporal Reasoning, Parsing,...

Some theoretical work on training paradigms [Punyakanok et. al., 05
more; Constraints Driven Learning, PR, Constrained EM...]

Some work on Inference, mostly approximations, bringing back ideas on
Lagrangian relaxation, etc.

:”_z’

t ComruraTion Group
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http://l2r.cs.uiuc.edu/tutorials.html

Constrained Conditional Models—ILP Formulations

Have been shown useful in the context of many NLP problems
[Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL ...]

Summarization; Co-reference; Information & Relation Extraction; Event

Identifications and causality ; Transliteration; Textual Entailment; Knowledge
Acquisition; Sentiments; Temporal Reasoning, Parsing,...

Some theoretical work on training paradigms [Punyakanok et. al., 05
more; Constraints Driven Learning, PR, Constrained EM...]

Some work on Inference, mostly approximations, bringing back ideas on
Lagrangian relaxation, etc.

Good summary and description of training paradigms:

:”_z’
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Constrained Conditional Models—ILP Formulations

Have been shown useful in the context of many NLP problems
[Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL ...]

Summarization; Co-reference; Information & Relation Extraction; Event

Identifications and causality ; Transliteration; Textual Entailment; Knowledge
Acquisition; Sentiments; Temporal Reasoning, Parsing,...

Some theoretical work on training paradigms [Punyakanok et. al., 05
more; Constraints Driven Learning, PR, Constrained EM...]

Some work on Inference, mostly approximations, bringing back ideas on
Lagrangian relaxation, etc.

Good summary and description of training paradigms:
[Chang, Ratinov & Roth, Machine Learning Journal 2012]

Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html

Qucipve ComputaTion Group
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LEARNING

y =argmax, .y Wo(x, y) + u'Cl(x, y)

m The following (high level) examples will briefly present several
learning paradigms where
1 The building blocks are the learning algorithms introduced later
[l Inference is necessary, as part of learning and the final decision.

m The focus is on scenarios where
[1 There is a need to learn more than one model (combine via inference)
1 Semi-supervised scenarios

[l Learning with latent representations

ol 1";\ CowmruraTion Group
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LEARNING

The second part

on how to learn

The following (high level) examples will briefly present several
learning paradigms where
The building blocks are the learning algorithms introduced later
Inference is necessary, as part of learning and the final decision.

The focus is on scenarios where
There is a need to learn more than one model (combine via inference)

Semi-supervised scenarios

Learning with latent representations

Qocnpive CompuraTion GRrOUP

CEWSITY OF ILLINOIS AT URBANA-CHAMPAIGN




LEARNING

The second part

y = argmax, u'C(x, y)é of the tutorial is
on how to learn

m The following (high level) examples will briefly present several
learning paradigms where
1 The building blocks are the learning algorithms introduced later

1 Inference is necessary, as part of learning and the final decision.

m The focus is on scenarios where
[1 There is a need to learn more than one model (combine via inference)
1 Semi-supervised scenarios

[l Learning with latent representations
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LEARNING

The second part

- T T of the tutorial is
= argmax wTlo(x, v) + uTC(x
y & yE& Q( Y) m on how to learn

m The following (high level) examples will briefly present several
learning paradigms where
1 The building blocks are the learning algorithms introduced later
[l Inference is necessary, as part of learning and the final decision.

m The focus is on scenarios where
[1 There is a need to learn more than one model (combine via inference)
1 Semi-supervised scenarios

[l Learning with latent representations
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LEARNING The third part of the tutorial is on how to L
do inference

The second part

- T T of the tutorial is
= argmax wTlo(x, v) + uTC(x
y & yE& Q( Y) m on how to learn

m The following (high level) examples will briefly present several
learning paradigms where
1 The building blocks are the learning algorithms introduced later
[l Inference is necessary, as part of learning and the final decision.

m The focus is on scenarios where
[1 There is a need to learn more than one model (combine via inference)
1 Semi-supervised scenarios

[l Learning with latent representations
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Verb SRL

n—1
maximize E E Ay Ly =y}

1=0 yey

where Ay = A F(x,y) = Ay

- F(x)
subject to

9 ComruraTion Group
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A bomb [A1] |
car ]
bomb ]
that bomb
(Reference) .
[R-A1]
exploded | Viexplode | |
outside location |
the [am-Loc] R
U.S. [
military temporal [
base [AM-TMP] R
in location |
Beniji [am-Loc] N
killed
11
Iraqi
citizens

killer [AO]

corpse [Al]




Verb SRL

n—1
maximize E E Ay Ly =y}

1=0 yely

where Ay = A F(x,y) =X, - F(x)
subject to ,
VZj Z l{yi:y} =1
yey
n—1
Vy e, Z Ly=yy =1
i=0
n—1 n—1

A bomb [A1] |
car ]
bomb ]
that bomb
(Reference) .
[R-A1]
exploded | Viexplode | |
outside location |
the [am-Loc] R
U.S. [
military temporal [
base [AM-TMP] R
in location |
Beniji [am-Loc] N
killed
11
Iraqi
citizens

vy E yR. Z ]'{y;i,:y:“R-AX”} <_: Z ]'{y?'.:“AX”]-
1=0

1=0

J
vj"y € yC: 1{yj:y:“C—A}{”} S Z 1{'_!;1':{{}'5.}{”}

1=0

OuP

8
BANA CHAMPAIGN

killer [AO]

corpse [Al]




m John, a fast-rising politician, slept on the train to Chicago.
m Verb Predicate: sleep




m John, a fast-rising politician, slept on the train to Chicago.

m Verb Predicate: sleep l
1 Sleeper: John, a fast-rising politician

1 Location: on the train to Chicago




m John, a fast-rising politician, slept on the train to Chicago.

m Verb Predicate: sleep l
1 Sleeper: John, a fast-rising politician

1 Location: on the train to Chicago

= Who was John?




Verb SRL is not Sufficient skip

John, ¢ fast-rising politician, slept on the train to Chicago.

| Verb Predicate: sleep |
Sleeper: John, a fast-rising politician
Location: on the train to Chicago

I Who was John?

Relation: Apposition (comma)

v

John, a fast-rising politician
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Verb SRL is not Sufficient skip

John, ¢ fast-rising politician, slept on the train to Chicago.

Verb Predicate: sleep l,
Sleeper: John, a fast-rising politician

Location: on the train to Chicago

Who was John?

Relation: Apposition (comma)

John, a fast-rising politician

What was John’s destination?




Verb SRL is not Sufficient skip

John, ¢ fast-rising politician, slept on the train to Chicago.

Verb Predicate: sleep l,
Sleeper: John, a fast-rising politician

Location: on the train to Chicago

Who was John?

Relation: Apposition (comma)

John, a fast-rising politician

What was John’s destination? l

Relation: Destination (preposition)
train to Chicago
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Extended Semantic Role Labeling

Many predicates; many roles; how to deal with more phenomena?

BEIRUT, Lebanon — Lebanon’s main opposition [Beirut]is in [Lebanon].

group called for widespread protests on Sunday in [Lebanon] has a main

the wake of a powerful bomb attack for which it opposition group.

blamed Syria, posing a challenge to a shaky [Lebanon’s main opposition
group] called for [widespread

coalition government that is led by pro-Syrian
protests]| [on Sunday].
factions and intensifying fears that Syria’s civil war

o . . There was [a powerful bomb
is spilling over into this country.

attack].
[Lebanon’s main opposition
& group] blamed [Syria].
BEIRUebanon _ Lebanoain opposition [Pro-Syrian factions] lead [a

shaky coalition government]
group|called for widespread protests in

Syria] has a [civil war].
the wak powerful bomb| attack for which it [Syria] ! !

[Someone] fears that [Syria’s
civil war is spilling over into

this country]. Sentence level
analysis may be

blameq ﬁyria][posing]a challenge to a shaky

coalition government that is|led by|pro-Syrian
factions and ntensifying [ears that Syriivil war

is|spilling overliintolthis country. ene .
epiting ’ influenced by
other sentences
o 4 i .'i % s -
e wivE CompruTaTion Group ]
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Computational Questions

John, ¢ fast-rising politician, slept on the train to Chicago.
| Verb Predicate: sleep |

Sleeper: John, a fast-rising politician

Location: on the train to Chicago

I Who was John?

Relation: Apposition (comma)

John, a fast-rising politician

What was John’s destination? !
Relation: Destination (preposition)
train to Chicago

NI ;':_.ff'm/’g CowmiruraTion Group
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Computational Questions

John, ¢ fast-rising politician, slept on the train to Chicago.

| Verb Predicate: sleep |
Sleeper: John, a fast-rising politician
Location: on the train to Chicago

I Who was John?

Relation: Apposition (comma)

John, a fast-rising politician

What was John’s destination? !
Relation: Destination (preposition)
train to Chicago

Qocpiye CompuraTion Group
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Identify the relation
expressed by the predicate,
and its arguments




Computational Questions

John, ¢ fast-rising politician, slept on the train to Chicago.

Verb Predicate: sleep l,
Sleeper: John, a fast-rising politician
Location: on the train to Chicago

Who was John?

Relation: Apposition (comma)

John, a fast-rising politician

What was John’s destination? !

Relation: Destination (preposition)

train to Chicag_o

e ComMPUTATION GROUP
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Identify the relation
expressed by the predicate,
and its arguments




Computational Questions

John, ¢ fast-rising politician, slept on the train to Chicago.
| Verb Predicate: sleep |

Sleeper: John, a fast-rising politician

Location: on the train to Chicago

I Who was John?

Relation: Apposition (comma)

John, a fast-rising politician

Identify the relation
expressed by the predicate,
and its arguments

What was John’s destination? !

Relation: Destination (preposition)

train to Chicag_o

)
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Verb SRL is not Sufficient

m Predict the preposition relations
0 [EMNLP, "11] m Jo fast-rising politician, slept on the tmffcngn.

w |ldentify the relation’s arguments ———

1 Sleeper: lohn, a fast-rising politician
[0 [PP:Trans. Of ACL, '13, Comma: AAAI'16]

] Location: on the trainto Chicago

Who was John?
O Relation: Apposition (comma)

1 lohn, afast-rising politician

® What was John's destination?
[ Relation: Destination (preposition)

[ trainto Chicago

@;ﬁ: OMPUTATION GROUP -
L BITW OE BLLINAIIS AT MEEANACHAMPAILN .




Computational Challenges

Predict the preposition relations ~ Ver®sRuisnotsufficient

[EMNLP, "11] Jolin, o fast-rising politician, slept on the train to Chicago.
. . , Verb Predicate: sleep -L
Identlfy the relathn S arguments Sleeper: lohn, a fast-rising palitician
[PP: Trans. Of ACL, 13, Comma: AAAI'16] Location: on the trainfo Chicago

Who was John?

Relation: Apposition (comma)

Very Iittle SuperVised data Y John, afast-rising politician
per phenomena What was John's destination? l
. . . Relation: Destination (preposition)
Minimal annotation trainto Chicago

only at the predicate level

ol GROUP
._:1 .lll _.-' ” _‘”..-l.:‘"_.\.:l_..-_pr : Es

A EHAMP AN
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Computational Challenges

Predict the preposition relations
[EMNLP, *11]

|dentify the relation’s arguments
[PP: Trans. Of ACL, 13, Comma: AAAI'16]

Very little supervised data

per phenomena

Minimal annotation

only at the predicate level

Verb SRL is not Sufficient

Jolin, o fast-rising politician, slept on the train to Chicago.
Verb Predicate: sleep -L

Sleeper: lohn, a fast-rising palitician

Location: on the trainto Chicago

Who was John?

Relation: Apposition (comma)

lohn, afast-rising palitician

What was John's destination? l
Relation: Destination (preposition)

trainto Chicago

"' ettt e Mire Ted e la TR i s
':EJ., IFFRAE WOMPUTATION “sROUP
".'.'F-_-':)rl:‘\.lrl. PR IR ANAEs ﬂr'\lkﬂl.\ﬂ.:-lpl.\.'\ll'ﬂll.ﬁ pa

Learning models in these settings exploits two principles:

Coherency among multiple phenomena

BN S
Qasipye CompuraTion Group
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Coherency in Semantic Role Labeling

Predicate-arguments generated should be consistent across phenomena

The touchdown scored by Bradford cemented the victory of the Eagles.

Verb Nominalization

Predicate: score Predicate: win Sense: 11(6)

AO: Bradford (scorer) | AO: the Eagles (winner)

Al: The touchdown
(points scored)

Linguistic Constraints:
mmmp AQ: the Eagles <
m=mp AQO: Bradford <

/

v CompurTaTIioN GROUP
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Computational Challenges

Predict the preposition relations
[EMNLP, *11]

|dentify the relation’s arguments
[PP: Trans. Of ACL, 13, Comma: AAAI'16]

Very little supervised data

per phenomena

Minimal annotation

only at the predicate level

Learning models in these settings exploits two principles:

Verb SRL is not Sufficient

Jolin, o fast-rising politician, slept on the train to Chicago.

Verb Predicate: sleep -L
Sleeper: lohn, a fast-rising palitician

Location: on the trainto Chicago

Who was John?

Relation: Apposition (comma)

lohn, afast-rising palitician

What was John's destination? l
Relation: Destination (preposition)

trainto Chicago

f‘;{_,l'.:.t}".}'f Comruration Grour
.} '.'!:-_-.rI:‘\.Ir'L EFF BLLANANIS AT UEBRASAE HAMPAILN

Coherency among multiple phenomena

BN S
Qasipye CompuraTion Group
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Computational Challenges

Predict the preposition relations ~ Ver®sRuisnotsufficient

[EMNLP, "11] Jolin, o fast-rising politician, slept on the train to Chicago.
. . , Verb Predicate: sleep -L
Identlfy the relathn S arguments Sleeper: lohn, a fast-rising palitician
[PP: Trans. Of ACL, 13, Comma: AAAI'16] Location: on the trainfo Chicago

Who was John?

Relation: Apposition (comma)

Very Iittle Supervised data Y lohn, afast-rising politician
per phenomena What was John's destination? l
.. . Relation: Destination (preposition)
Minimal annotation trainto Chicago
Yy
only at the predicate level Qectpis Comryranion Groue | rs

Learning models in these settings exploits two principles:
Coherency among multiple phenomena
Constraining latent structures (relating observed and latent variables)
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Computational Challenges

Predict the preposition relations
[EMNLP, *11]

|dentify the relation’s arguments
[PP: Trans. Of ACL, 13, Comma: AAAI'16]

Very little supervised data

per phenomena

Minimal annotation

only at the predicate level

Verb SRL is not Sufficient

Jolin, o fast-rising politician, slept on the train to Chicago.
Verb Predicate: sleep -L

Sleeper: lohn, a fast-rising palitician

Location: on the trainto Chicago

Who was John?

Relation: Apposition (comma)

lohn, afast-rising palitician

What was John's destination? l
Relation: Destination (preposition)

trainto Chicago
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Learning models in these settings exploits two principles:

Coherency among multiple phenomena

Constraining latent structures (relating observed and latent variables)
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Input & Argument &
relation their types




Computational Challenges

Predict the preposition relations ~ Ver®sRuisnotsufficient

[EMNLP, "11] Jolin, o fast-rising politician, slept on the train to Chicago.
. . , Verb Predicate: sleep -L
Identlfy the relathn S arguments Sleeper: lohn, a fast-rising palitician
[PP: Trans. Of ACL, 13, Comma: AAAI'16] Location: on the trainfo Chicago

Who was John?

Relation: Apposition (comma)

Very Iittle Supervised data Y lohn, afast-rising politician
per phenomena What was John's destination? l
.. . Relation: Destination (preposition)
Minimal annotation trsinto Chicago
only at the predicate level ot Couryramon Growe rs

Learning models in these settings exploits two principles:
Coherency among multiple phenomena
Constraining latent structures (relating observed and latent variables)

Done via global inference via CCM
Input & Argument &
relation their types

BN S
Qasipye CompuraTion Group
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Verb arguments

max E E y@te®?
y
t a




Joint inference (CCI\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments

max 5 ' 5 ‘ya,tca,t
y ) )
t a

N f/: ComruTaTion Group
» S
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Joint inference (CCI\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments

max S 5 ya”tca"75
v L4
t a

y

—> Argument candidates

Each argument label

. _Jrrva vE ComruraTion Group
/{
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Joint inference (CCI\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments

max S 5 y"_l”tca'”75
y o L d
t a

Constraints:

Verb SRL constraints

e ComruraTion Grour
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Joint inference (CCI\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments Preposition relations

Cb,t a,t ma;X y(‘r’pcrap
m;;l,x 54 SJy C y S y S y
t a r P

Constraints:

Verb SRL constraints

7 A
Qe

e ComMPUTATION GROUP
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Joint inference (CCI\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments Preposition relations
S S " TP ATHP
maxj "5 ‘ya,tca,t max » » y’c
Y ~ ~ Y r
t a P
Constraints. Preposition relation v
onstraints. label Preposition

Verb SRL constraints

7 A
Qe

e ComMPUTATION GROUP
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Joint inference (CCI\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments Preposition relations

maxj ~ 5 D0t pant max y > y PP
y - L Y y < =
t a r p

Constraints:

Verb SRL constraints Preposition SRL Constraints
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Joint inference (CCI\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments Preposition relations

III)E,]JX Z )\t Z ya,tca,t 4 Z 2" Z y’r‘,pc’r,p
t a r p

Constraints:

Verb SRL constraints Preposition SRL Constraints
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Joint inference (CCI\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments Preposition relations

III)E,]JX Z /\t Z ya,tca,t 4 Z 2" Z y’r‘,pc’r,p
t a r p

Constraints:

Verb SRL constraints Preposition SRL Constraints

+ Joint constraints between tasks; easy with ILP formulations

e CoMPUTATION GROUP page 53l
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Joint inference (CCl\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments Preposition relations

III)E,]JX Z /\t Z ya,tca,t 4 Z 2" Z y’r‘,pc’r,p
t a r p

Constraints:

Verb SRL constraints Preposition SRL Constraints

+ Joint constraints between tasks; easy with ILP formulations

Joint Inference — no (or minimal) joint learning

Qo “ﬁ?f/r CoMPUTATION GROUP page53 [l
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Joint inference (CCl\/ls) Variable y?t indicates whether candidate
argument a is assigned a label t.

c®t is the corresponding model score

Verb arguments Preposition relations

m)zrxx Z A Z y®te®t + Z A Z y et
t a r p

Constraints:

Verb SRL constraints Preposition SRL Constraints

+ Joint constraints between tasks; easy with ILP formulations

Joint Inference — no (or minimal) joint learning

Qo “ﬁ?f/r CoMPUTATION GROUP page53 [l
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Extended SRL [Demo]

HSRL HPreposition  H Preposition

EE: leader [AD]

was
heading V: head

to Destination
Nairobi

in Destination [Al] Location

Kenya
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http://cogcomp.cs.illinois.edu/demo/srl_exp_new/

Extended SRL [Demo]

HSRL HPreposition  H Preposition

EE: leader [AD]

was
heading V: head

to Destination
Nairobi

in Destination [Al] Location

Kenya

Joint inference over phenomena—specific
models to enforce consistency

pvE CompuraTion Group
BAN

ILLINOIS AT UR A-CHAMPAIGN

Models trained with latent structure:
senses, types, arguments



http://cogcomp.cs.illinois.edu/demo/srl_exp_new/

Extended SRL [Demo]

HSRL HPreposition  H Preposition
EE: leader [AD]
Was
heading V: head
to Destination
Nairobi
in Destination [Al] Location
Kenya
Joint inference over phenomena—specific Models trained with latent structure:
models to enforce consistency senses, types, arguments

More to do with other relations, discourse phenomena,...

NPy E COMPUTATION GROUP page 54 [fl|
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Information Extraction without Output Expectations

Lars Ole Andersen . Program analysis and specialization for the C
Programming language. PhD thesis. DIKU , University of
Copenhagen, May 1994 .

[AUTHOR]

[TITLE]

[EDITOR]
[BOOKTITLE]

[TECH-REPORT]
[INSTITUTION]

[DATE]
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Information Extraction without Output Expectations

Lars Ole Andersen . Program analysis and specialization for the C
Programming language. PhD thesis. DIKU , University of
Copenhagen, May 1994 .

Prediction result of a trained HMM

[AUTHOR] Lars Ole Andersen . Program analysis and
[TITLE] specialization for the

[EDITOR] C

[BOOKTITLE] Programming language

[TECH-REPORT] . PhD thesis.

[INSTITUTION] DIKU, University of Copenhagen , May
[DATE] 1994 .

vpvE ComputaTion Group
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Information Extraction without Output Expectations

Lars Ole Andersen . Program analysis and specialization for the C
Programming language. PhD thesis. DIKU , University of
Copenhagen, May 1994 .

Prediction result of a trained HMM

[AUTHOR] Lars Ole Andersen . Program analysis and
[TITLE] specialization for the

[EDITOR] C

[BOOKTITLE] Programming language

[TECH-REPORT] . PhD thesis.

[INSTITUTION] DIKU, University of Copenhagen , May
[DATE] 1994 .

vpvE ComputaTion Group
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Information Extraction without Output Expectations

Lars Ole Andersen . Program analysis and specialization for the C
Programming language. PhD thesis. DIKU , University of
Copenhagen, May 1994 .

argmax A - F'(x.y)

Y

Prediction result of a trained HMM
[AUTHOR] Lars Ole Andersen . Program analysis and
[TITLE] specialization for the
[EDITOR] C
[BOOKTITLE] Programming language
[TECH-REPORT] . PhD thesis.
[INSTITUTION] DIKU , University of Copenhagen , May

[DATE] 1994 .

vpvE ComputaTion Group
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Information Extraction without Output Expectations

Lars Ole Andersen . Program analysis and specialization for the C
Programming language. PhD thesis. DIKU , University of
Copenhagen, May 1994 .

argmax A - F'(x.y)

Y

Prediction result of a trained HMM
[AUTHOR] Lars Ole Andersef . Program analysis and
[TITLE] specialization for the
[EDITOR] C
[BOOKTITLE] Programming language
[TECH-REPORT] . BhD thesis.
[INSTITUTION] BiKU , University of Copenhager/, May

1994 .

[DATE]

Violates lots of natural constraints!
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m (Standard) Machine Learning Approaches
1 Higher Order HMM/CRF?
(1 Increasing the window size?

Increasing the model complexity

1 Adding a lot of new features Increase difficulty of Learning

= Requires a lot of labeled examples




Strategies for Improving the Results

m (Standard) Machine Learning Approaches
0 Higher Order HMM/CRF?
] Increasing the window size?

Increasing the model complexity

1 Adding a lot of new features Increase difficulty of Learning

= Requires a lot of labeled examples

1 What if we only have a few labeled examples?

Can we keep the learned model simple
and still make expressive decisions?

Berpve CompuTATION GROUP
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Strategies for Improving the Results

(Standard) Machine Learning Approaches

Higher Order HMM/CRF?
Increasing the window size?

Increasing the model complexity

Adding a lot of new features Increase difficulty of Learning

Requires a lot of labeled examples

What if we only have a few labeled examples?

Can we keep the learned model simple
and still make expressive decisions?

Instead:

Constrain the output to make sense — satisfy our expectations

Push the (simple) model in a direction that makes sense — minimally
violates our expectations.

wpye CompuTaTiONn GRrROUP
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Expectations from the output (Constraints)

Each field must be a consecutive list of words and can appear
at most once in a citation.

State transitions must occur on punctuation marks.
The citation can only start with AUTHOR or EDITOR.
The words pp., pages correspond to PAGE.

Four digits starting with 20xx and 19xx are DATE.
Quotations can appear only in TITLE

L'i

e ComrutaTion Group
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Expectations from the output (Constraints)

Each field must be a consecutive list of words and can appear
at most once in a citation.

State transitions must occur on punctuation marks.
The citation can only start with AUTHOR or EDITOR.
The words pp., pages correspond to PAGE.

Four digits starting with 20xx and 19xx are DATE.
Quotations can appear only in TITLE

Easy to express pieces of “knowledge”
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Expectations from the output (Constraints)

Each field must be a consecutive list of words and can appear
at most once in a citation.

State transitions must occur on punctuation marks.
The citation can only start with AUTHOR or EDITOR.
The words pp., pages correspond to PAGE.

Four digits starting with 20xx and 19xx are DATE.
Quotations can appear only in TITLE

Easy to express pieces of “knowledge”

Non Propositional; May use Quantifiers

ComruratTion Group
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Information Extraction with Expectation Constraints

Adding constraints, we get correct results!
Without changing the model

argmax X - F'(x,vy)

Yy
[AUTHOR] Lars Ole Andersen .
[TITLE] Program analysis and specialization for the
C Programming language .
[TECH-REPORT] PhD thesis .
[INSTITUTION] DIKU , University of Copenhagen,
[DATE] May, 1994 .

ruTATION GrOUP
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Information Extraction with Expectation Constraints

Adding constraints, we get correct results!
Without changing the model

argmax X - F'(x,vy)

Yy
[AUTHOR] Lars Ole Andersen .
[TITLE] Program analysis and specialization for the
C Programming language .
[TECH-REPORT] PhD thesis .
[INSTITUTION] DIKU , University of Copenhagen,,
[DATE] May, 1994 .
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Information Extraction with Expectation Constraints

Adding constraints, we get correct results!
Without changing the model

N
argmax X - F'(x,y) — Z pPid(y, Lo, ()

Y i=1
[AUTHOR] Lars Ole Andersen .
[TITLE] Program analysis and specialization for the

C Programming language .

[TECH-REPORT] PhD thesis .
[INSTITUTION] DIKU , University of Copenhagen,,
[DATE] May, 1994 .

)
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Seed examples

Model

Un-labeled Data




Seed examples

Model

T~

Un-labeled Data




Guiding (Semi-Supervised) Learning with Constraints

® [n traditional Semi-Supervised learning the model can drift
away from the correct one.

Seed examples —— Model

S

Un-labeled Data

»y
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[5.22 WSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Guiding (Semi-Supervised) Learning with Constraints

® [n traditional Semi-Supervised learning the model can drift
away from the correct one.

Seed examples —— Model Constraints

N

Un-labeled Data

Decision Time
Constraints

ruTATION GrOUP
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Guiding (Semi-Supervised) Learning with Constraints

® [n traditional Semi-Supervised learning the model can drift
away from the correct one.

m Constraints can be used to generate better training data

0 Attraining to improve labeling of un-labeled data (and thus
improve the model)

0 At decision time, to bias the objective function towards favoring
constraint satisfaction.

Seed examples —— Model Constraints

Better Predictions / \/ Better model-based labeled data

Un-labeled Data

Decision Time
Constraints

w
1y e CompuTATION CROUP
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[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ’'12]
See also: Ganchev et. al. 10 (PR)
(w,p)=learn(L)
For N iterations do
T=¢
For each x in unlabeled dataset
h < argmax, w' ¢(x,y) - 2 p dc(X,y)
T=T U {(x, h)}

(w.p) =y (W,p) + (1-y) learn(T)




Constraints Driven Learning (CoDL)

[Chang, Ratinov, Roth, ACL’'07;ICML'08,MLJ'12]
See also: Ganchev et. al. 10 (PR)

Supervised learning algorithm
(w,p)=learn(L) parameterized by (w,p). [LATER]

For N iterations do
T=¢
For each x in unlabeled dataset
h < argmax, W' ¢(x,y) - 2. p dc(X,y)
T=T U {(x, h)}

(w.p) =y (W,p) + (1-y) learn(T)

OMPUTATION Crour
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Constraints Driven Learning (CoDL)

[Chang, Ratinov, Roth, ACL’'07;ICML'08,MLJ'12]
See also: Ganchev et. al. 10 (PR)

Supervised learning algorithm

(w,p)=learn(L) parameterized by (w,p). [LATER]
For N iterations do
T=¢ Inference with constraints:

_ augment the training set
For each x in unlabeled dataset

h « argmax, wT ¢(x,y) - X p dc(X,)
T=T U {(x, h)}

(w.p) =y (W,p) + (1-y) learn(T)

¢ 5
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Constraints Driven Learning (CoDL)

[Chang, Ratinov, Roth, ACL’'07;ICML'08,MLJ'12]
See also: Ganchev et. al. 10 (PR)

Supervised learning algorithm

(w,p)=learn(L) parameterized by (w,p). [LATER]
For N iterations do
T=¢ Inference with constraints:

_ augment the training set
For each x in unlabeled dataset

h < argmax, W™ ¢(x,y) - X p de(X.y)
T=T U {(x, h)}
Learn from new training data

(w,p) =v (w,p) + (1-v) learn(T) Weigh supervised &
unsupervised models.

w
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Constraints Driven Learning (CoDL) Archetypical Semi/un-supervised
learning: A constrained EM

[Chang, Ratinov, Roth, ACL’'07;ICML'08,MLJ'12]
See also: Ganchev et. al. 10 (PR)

Supervised learning algorithm

(w,p)=learn(L) parameterized by (w,p). [LATER]
For N iterations do
T=¢ Inference with constraints:

_ augment the training set
For each x in unlabeled dataset

h < argmax, W™ ¢(x,y) - X p de(X.y)
T=T U {(x, h)}
Learn from new training data

(w,p) =v (w,p) + (1-v) learn(T) Weigh supervised &
unsupervised models.

w
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Constraints Driven Learning (CoDL) Archetypical Semi/un-supervised
learning: A constrained EM

[Chang, Ratinov, Roth, ACL’'07;ICML'08,MLJ'12]
See also: Ganchev et. al. 10 (PR)

Supervised learning algorithm

(w,p)=learn(L) parameterized by (w,p). [LATER]
For N iterations do
T=¢ Inference with constraints:

_ augment the training set
For each x in unlabeled dataset

h < argmax, W™ ¢(x,y) - X p de(X.y)
T=T U {(x, h)}
Learn from new training data

(w,p) =v (w,p) + (1-v) learn(T) Weigh supervised &
unsupervised models.

Excellent Experimental Results showing the advantages of using constraints,
especially with small amounts of labeled data [Chang et. al, Others]

_")
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Value of Constraints in Semi-Supervised Learning

Objective function:  f3 c(x,y) Z w0 (X, y) Zpidcé(x,y)‘

0. 95 | Learning w/o Constraints: 300 examples.

Learning w 10 Constraints

5 10 15 20 25 100
# of available labeled examples

oMPUTATION GrOUP

ILLINOIS AT URBANA-CHAMPAIGN




Value of Constraints in Semi-Supervised Learning

Objective function:  fo c(x.y) = Y widi(x.y) — Y pide,(x.y).

Constraiits are used to
=1 Rootstrap a semi-
1 supervised learner
simple model + constraints
used to annotate unlabeled
data, which in turn is used
to keep training the model.

0. 95 | Learning w/o Constraints: 300 examples.

Learning w 10 Constraints

5 10 15 20 25 100
# of available labeled examples

Qocpiye CompuraTion Group
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Value of Constraints in Semi-Supervised Learning

Objective function:  fs c(x.y) Z wid:(X,y) Zpadf (X,y).

Constraiits are used to
0. 95 | Learning w/o Constraints: 300 examples. | Bootstrap a e
supervised learner
simple model + constraints
used to annotate unlabeled
data, which in turn is used
to keep training the model.

Learning w 10 Constraints

See Chang et. al. MLJ’12 on
the use of soft constraints
in CCMs.
The tutorial’s web page will
0.7 . . . . include a write-up on ILP
5 10 15 20 25 100 formulations incorporating
# of available labeled examples soft constraints.
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CoDL as Constrained Hard EM

Hard EM is a popular variant of EM
While EM estimates a distribution over hidden variables in

the E-step,
... Hard EM predicts the best output in the E-step

h= y'= argmax, P, (y|x)
Alternatively, hard EM predicts a peaked distribution

q(y) =9,-,

NPy E CompruTaTion Grour
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CoDL as Constrained Hard EM

Hard EM is a popular variant of EM

While EM estimates a distribution over hidden variables in
the E-step,

.. Hard EM predicts the best output in the E-step
h= y'= argmax, P, (y|x)
Alternatively, hard EM predicts a peaked distribution
Q(y) = 5 ==y*

Constrained-Driven Learning (CODL) — can be viewed as a
constrained version of hard EM:

*®
Yy = argmaxyzUyS b Pw(yl x)
Constraining the
feasible set

sy E CoMPUTATION GRrOUP page 62 (il
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Constrained EM: Two Versions

While Constrained-Driven Learning [copL; changet al, 07,12]

is a constrained version of hard EM: Constraining the

y*= argmaxy:Uy< b wa(ylw) feasible set

.. It is possible to derive a constrained version of EM:

oMPUTATION GrOouP
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Constrained EM: Two Versions

While Constrained-Driven Learning [copL; changet al, 07,12]

is a constrained version of hard EM: Constraining the

y*= argmaxy:Uy< b wa(ylw) feasible set

.. It is possible to derive a constrained version of EM:

To do that, constraints are relaxed into expectation constraints
on the posterior probability g:
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Constrained EM: Two Versions

While Constrained-Driven Learning [copL; changet al, 07,12]

is a constrained version of hard EM: Constraining the

y*= argmaxy:Uy< b wa(ylw) feasible set

.. It is possible to derive a constrained version of EM:

To do that, constraints are relaxed into expectation constraints
on the posterior probability g:

E Uyl <b

_")
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Constrained EM: Two Versions

While Constrained-Driven Learning [copL; changet al, 07,12]
is a constrained version of hard EM: Constraining the

y*= argmaxy:Uy< b Pw(ylw) feasible set

... It is possible to derive a constrained version of EM:

To do that, constraints are relaxed into expectation constraints
on the posterior probability g:

E Uyl <b
The E-step now becomes: [Neal & Hinton ‘99 view of EM]
) _ arg min K L(q(y)||P(y[x, w))
9= 4a(y)>0.E,[Uyl<b,> q(y)=1
Y
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Constrained EM: Two Versions

While Constrained-Driven Learning [copL; changet al, 07,12]
is a constrained version of hard EM: Constraining the

y*= argmaxy:Uy< b Pw(ylw) feasible set

... It is possible to derive a constrained version of EM:

To do that, constraints are relaxed into expectation constraints
on the posterior probability g:

E Uyl <b
The E-step now becomes: [Neal & Hinton ‘99 view of EM]
) _ arg min K L(q(y)||P(y[x, w))
9= 4a(y)>0.E,[Uyl<b,> q(y)=1
Y

This is Taskar’s Posterior Regularization [PR] [Ganchev et al, 10]

NPy e CompruraTion Grour
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Which (Constrained) EM to use?

There is a lot of literature on EM vs hard EM

Experimentally, the bottom line is that with a good enough
initialization point, hard EM is probably better (and more efficient).

E.g., EM vs hard EM (Spitkovsky et al, 10)
Similar issues exist in the constrained case: CoDL vs. PR

The constraints view helped developing additional algorithmic insight

that

Provides a continuum of algorithms — from EM to hard EM, and
infinitely many new EM algorithms in between.

Implementation wise, not more complicated than EM

(s @(GI\IJJ pE CompPuTATION GROUP
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Which (Constrained) EM to use?

Y VY that
There is a lot of literature on EM vs hard EM

Experimentally, the bottom line is that with a good enough
initialization point, hard EM is probably better (and more efficient).

E.g., EM vs hard EM (Spitkovsky et al, 10)
Similar issues exist in the constrained case: CoDL vs. PR

The constraints view helped developing additional algorithmic insight

Unified EM (UEM) [Samdani & Roth, NAACL-12]

Provides a continuum of algorithms — from EM to hard EM, and
infinitely many new EM algorithms in between.

Implementation wise, not more complicated than EM
Implementation wise, not more complicated than EM
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LEARNING The third part of the tutorial is on how to L
do inference

The second part

— . .

= aremax uTClx of the tutorial is
y & Y€ =L (, on how to learn

m The following (high level) examples will briefly present several
learning paradigms where
1 The building blocks are the learning algorithms introduced later

1 Inference is necessary, as part of learning and the final decision.

= The focus is on scenarios where

[1 There is a need to learn more than one model (combine via inference)

1 Semi-supervised scenarios

smvpbye CoMPuTATION GROUP
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LEARNING The third part of the tutorial is on how to
do inference

The second part

on how to learn

The following (high level) examples will briefly present several
learning paradigms where
The building blocks are the learning algorithms introduced later

Inference is necessary, as part of learning and the final decision.
The focus is on scenarios where

There is a need to learn more than one model (combine via inference)
Semi-supervised scenarios

Learning with Latent Structured Representations
A meta-algorithm that makes use of structured learning algorithm s

Including approaches that make use of declarative constraints to
minimize the level of supervision using constraints

[Chang et.al. ICML’10, NAACL’10,...]
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INFERENCE

For each example (x, v,)
Do: (with the current weight vector w)
Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndFor

)
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INFERENCE

For each example (x, v,)
Do: (with the current weight vector w)
—) Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndFor
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INFERENCE

For each example (x, v,)
Do: (with the current weight vector w)
Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
) Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndFor
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INFERENCE

For each example (x, v,)
Do: (with the current weight vector w)
Predict: perform Inference with the current weight vector
yi = argmax, . y w' o X Y)
Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
—) Update w
Otherwise: no need to update w on this example
EndFor

wpye CompuTaTiONn GRrROUP
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INFERENCE

For each example (x, v,)
Do: (with the current weight vector w)
Predict: perform Inference with the current weight vector
y; =argmax, . y W' ¢ (x;,y)
Check the learning constraints
Is the score of the current prediction better than of (x,, y;)?
If Yes — a mistaken prediction
Update w
Otherwise: no need to update w on this example
EndFor

Inference is done many times — both at decision time (one inference per
predicates...) and during training.

oMPUTATION GrOUP
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m Imagine that you already solved many structured output
inference problems

[1 Co-reference resolution; Semantic Role Labeling; Parsing citations;
Summarization; dependency parsing; image segmentation,...

1 Your solution method doesn’t matter either




Amortized ILP based Inference

Imagine that you already solved many structured output
inference problems

Co-reference resolution; Semantic Role Labeling; Parsing citations;
Summarization; dependency parsing; image segmentation,...

Your solution method doesn’t matter either

How can we exploit this fact to save inference cost?

After solving n inference problems, can we make the
(n+1)th one faster?

BN
Qucipve ComputaTion Group
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Amortized ILP based Inference

Imagine that you already solved many structured output
inference problems

Co-reference resolution; Semantic Role Labeling; Parsing citations;
Summarization; dependency parsing; image segmentation,...

Your solution method doesn’t matter either

How can we exploit this fact to save inference cost?

After solving n inference problems, can we make the
(n+1)th one faster?

We will show how to do it when your problem is formulated as
a 0-1 Linear Program:

)
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Amortized ILP based Inference

Imagine that you already solved many structured output
inference problems

Co-reference resolution; Semantic Role Labeling; Parsing citations;
Summarization; dependency parsing; image segmentation,...

Your solution method doesn’t matter either

How can we exploit this fact to save inference cost?

After solving n inference problems, can we make the
(n+1)th one faster?

We will show how to do it when your problem is formulated as
a 0-1 Linear Program:

Max c - X
Ax<b
x €{0,1}
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Amortized ILP based Inference

Imagine that you already solved many structured output
inference problems

Co-reference resolution; Semantic Role Labeling; Parsing citations;
Summarization; dependency parsing; image segmentation,...

Your solution method doesn’t matter either

How can we exploit this fact to save inference cost?

After solving n inference problems, can we make the
(n+1)th one faster?

We will show how to do it when your problem is formulated as
a 0-1 Linear Program:

Max c - X = Very general: All discrete MAP problems can be
formulated as 0-1 LPs [Roth & Yih’04; Taskar ’04]
Ax<Db . :
=  We only care about inference formulation, not
x €{0,1} algorithmic solution

OMPUTATION GRrOUP page 69 (I
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The Hope: POS Tagging on Gigaword

= Number of examples of a given size

— Number of unique POS tag sequences
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The Hope:
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Dependency Parsing on Gigaword

=— Number of examples of a given size
— Number of unique Dependency Trees

Number of structures is

much smaller than the
number of sentences
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POS Tagging on Gigaword

—Number of examples of size

—Number of unique POS tag sequences
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POS Tagging on Gigaword

—Number of examples of size

—Number of unique POS tag sequences
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POS Tagging on Gigaword
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POS Tagging on Gigaword

—Number of examples of size

—Number of unique POS tag sequences

600

>00 . How skewed is the

400 distribution of the
structures?

Thousands

300 /
200 / § A small # of
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Redundancy in Inference and Learning

This redundancy is important since in all NLP tasks there is a
need to solve many inferences, at least one per sentence.

However, it is as important in structured learning, where
algorithms cycle between

performing inference, and 100k

updating the model. 80k [ Inference problems

60k |

40k |

20k | Distinct solutions -

-------
----------------
- .
-----
.—-—
- -

0 10 20 30 40 50
# training rounds

NP E CoMPUTATION GROUP page 74 [l
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m These statistics show that many different instances are
mapped into identical inference outcomes.
1 Pigeon Hole Principle




Amortized ILP Inference

These statistics show that many different instances are
mapped into identical inference outcomes.
Pigeon Hole Principle

How can we exploit this fact to save inference cost over the
life time of the learning & Inference program?
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Amortized ILP Inference

These statistics show that many different instances are
mapped into identical inference outcomes.
Pigeon Hole Principle

How can we exploit this fact to save inference cost over the
life time of the learning & Inference program?

We give conditions on the objective functions
(for all objectives with the same # or variables and same feasible set),

under which the solution of a new problem Q is the same as the
one of P (which we already cached)

NVPvE ComMmPUuTATION GROUP
PAASERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Amortized ILP Inference  we argue here that the inference formulation
provides a new level of abstraction.

These statistics show that many different instances are
mapped into identical inference outcomes.
Pigeon Hole Principle

How can we exploit this fact to save inference cost over the
life time of the learning & Inference program?

We give conditions on the objective functions
(for all objectives with the same # or variables and same feasible set),

under which the solution of a new problem Q is the same as the
one of P (which we already cached)
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Amortized ILP Inference  we argue here that the inference formulation
provides a new level of abstraction.

These statistics show that many different instances are
mapped into identical inference outcomes.
Pigeon Hole Principle

How can we exploit this fact to save inference cost over the
life time of the learning & Inference program?

We give conditions on the objective functions
(for all objectives with the same # or variables and same feasible set),

under which the solution of a new problem Q is the same as the
one of P (which we already cached)

If CONDITION ( , new problem) 0.04 ms
then (no need to call the solver) :
SOLUTION(new problem) = old solution
Else
Call base solver and update 2 ms




number of inference calls without amortization
number of inference calls with amortization

Speedup =

T Cc Q ® ®T O»

Amortization schemes [EMNLP’12, ACL'13, AAAI'15]




Speedup & Accuracy

T Cc Q9 ® ®T O»n

By decomposing the objective function, building

on the fact that “smaller structures” are more
redundant, it is possible to get even better results.

number of inference calls without amortization

Speedup =

6.8

5.8

4.8

3.8

2.8

1.8

1.0 g —

baseline  Thl Th2 Th3 Margin  Margin
based based +

decomp

Amortization schemes [EMNLP’12, ACL’13, AAAI'15]
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Speedup & Accuracy By decomposing the objective function, building
on the fact that “smaller structures” are more

redundant, it is possible to get even better results.
number of inference calls without amortization

Speedup = number of inference calls with amortization
6.8
~ 7 Solve only one in
S 53 // six problems!
0 - 70
4.8
e
- 65
e 3.8 B Speedup
d F1
U 2.8 -
P 1.8 >
1.0 g -0

baseline  Thl Th2 Th3 Margin  Margin
based based +

. _ decomp
Amortization schemes [EMNLP’12, ACL'13, AAAI'15]
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Speedup & Accuracy  The results show that, indeed, the inference
formulation provides a new level of abstraction

that can be exploited to re-use solutions
number of inference calls without amortization

Speedup = number of inference calls with amortization
6.8
_ 5 Solve only one in
S 5.8 / six problems!
Even stronger results can P4 7
P 48 1 be shown when ILP |
€ inference is used within the
e 3.8 — Structured Learning loop. - 65 B Speedup
d (after the break) F1
" 2.8 - 60
P 1.8 - 55
1.0 58— - 50

baseline  Thl Th2 Th3 Margin  Margin
based based +

decomp
Amortization schemes [EMNLP’12, ACL'13, AAAI'15]

Qocpiye CompuraTion Group

£JSITY OF ILLINOIS AT URBANA-CHAMPAIGN




First Summary

Introduced Structured Prediction
Many examples

Introduced the key building blocks of structured learning and
inference

Focused on Constraints Conditional Models

CCMS: The motivating scenario is the case in which
Joint INFERENCE is essential
Joint LEARNING should be done thoughtfully
Not everything can be learned together
We don’t always want to learn everything together
Moving on to
Details on Joint Learning
Details on Inference

oMPUTATION GrOouP
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