
CIKM’09

Learning Better Transliterations

Jeff Pasternack
University of Illinois at Urbana-Champaign

Department of Computer Science
201 North Goodwin Avenue
Urbana, Illinois 61801-2302

jpaster2@uiuc.edu

Dan Roth
University of Illinois at Urbana-Champaign

Department of Computer Science
201 North Goodwin Avenue
Urbana, Illinois 61801-2302

danr@uiuc.edu

ABSTRACT
We introduce a new probabilistic model for transliteration
that performs significantly better than previous approaches,
is language-agnostic, requiring no knowledge of the source
or target languages, and is capable of both generation (cre-
ating the most likely transliteration of a source word) and
discovery (selecting the most likely transliteration from a
list of candidate words). Our experimental results demon-
strate improved accuracy over the existing state-of-the-art
by more than 10% in Chinese, Hebrew and Russian. While
past work has commonly made use of fixed-size n-gram fea-
tures along with more traditional models such as HMM or
Perceptron, we utilize an intuitive notion of “productions”,
where each source word can be segmented into a series of
contiguous, non-overlapping substrings of any size, each of
which independently transliterates to a substring in the tar-
get language with a given probability (e.g. P (wash⇒ваш) =
0.95). To learn these parameters, we employ Expectation-
Maximization (EM), with the alignment between substrings
in the source and target word training pairs as our latent
data. Despite the size of the parameter space and the 2|w|−1

possible segmentations to consider for each word, by using
dynamic programming each iteration of EM takes O(m6n)
time, where m is the length of the longest word in the data
and n is the number of word pairs, and is very fast in prac-
tice. Furthermore, discovering transliterations takes only
O(m4w) time, where w is the number of candidate words to
choose from, and generating a transliteration takes O(m2k2)
time, where k is a pruning constant (we used a value of 100).
Additionally, we are able to obtain training examples in an
unsupervised fashion from Wikipedia by using a relatively
simple algorithm to filter potential word pairs.

Categories and Subject Descriptors
I.2.7 [Computing Methodologies]: Artificial Intelligence—
Natural Language Processing ; H.3.m [Information Sys-
tems]: Information Storage and Retrieval—Miscellaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

General Terms
Algorithms, Experimentation, Languages

Keywords
transliteration, translation, probabilistic models, multi-lingual
information retrieval

1. INTRODUCTION
Transliteration, where a word is transformed into another

language with a pronunciation as close as possible to the
original, is integral to both translation and multi-lingual in-
formation retrieval. Perhaps the most common method is
the simplest: transliteration tables of deterministic map-
pings of short character sequences (e.g. shch⇒щ). Al-
though ubiquitous and computationally trivial, accuracy is
quite low; an ambiguous letter such as the ‘a’ in “Jan” and
“Jane” will readily defy such an approach. Many grapheme
models have attempted to overcome this by learning more
comprehensive, weighted mappings based on unigram, bi-
gram or trigram features, but it is easy to find problem
cases here, too (e.g. “ough” in thought and though). Al-
ternatively, one can employ phonetics, to predict first the
sound of the source word and then the transcription of that
sound into the target language; the phonetic model embodies
a vast store of prior knowledge about the source language
(or must itself be learned), but even assuming this exists,
performance is limited since transliterations are influenced
by both the original sound and the original spelling. Many
pairs of words (Terra and Tera) are homophones but have
differently-spelled transliterations (Russian: Терра and Тера).

We instead introduce a new grapheme model of translit-
eration that requires no prior knowledge of either the source
or target language. Instead of learning mappings of fixed-
size n-grams of the source language to fixed-size n-grams of
the target language, we permit the mapped substrings to
be of any length, allowing us to learn that walk⇒уок, even
when wal⇒{уо, уол, вал, ...} is quite ambiguous. In general,
longer source substrings have more certain mappings, and it
is this phenomenon that helps us avoid deleterious overfit-
ting even on small training sets: a longer character substring
such as “doaldo” may only be seen once during training,
but if we see the same substring again when predicting a
transliteration, it’s very likely that the same transliteration
(доалдо) applies. Of course, because our mappings (which
we will also refer to as productions) are variable length, the
number of ways of segmenting a source word of length |S| is
exponential, 2|S|−1; for example, “John” may be segmented

as John (one segment), J-ohn, Jo-hn, Joh-n, J-o-hn, Jo-h-n,
J-oh-n, and J-o-h-n, and the segmentation used determines
which productions apply (do we transliterate the substrings
“J” and “ohn”? “Jo” and “hn”?) Certainly, if we attempted
to use a naive algorithm, the problem would be intractable
but, as we shall see later when we present our training and
prediction algorithms, we can overcome this with dynamic
programming.

Our key contribution is a high performance, language-
agnostic, supervised discriminative model for transliteration
with relatively low time complexity that is capable of both
transliteration generation and discovery. We use both the
training set from [4] and data automatically extracted from
Wikipedia with a simple filtering algorithm, comparing against
both the supervised algorithm of [4] as well as the weakly su-
pervised approaches of [2, 7] and show substantial improve-
ment over past results in both cases, increasing accuracies
by more than 10% for Russian, Hebrew and Chinese.

We next examine and compare to previous work before
formally introducing our algorithms and EM derivation; we
then present our evaluation methodology and results before
finally concluding.

2. PREVIOUS WORK
Existing transliteration methods can be examined in four

basic dimensions: whether they are probabilistic or non-
probabilistic, whether they can generate transliterations di-
rectly or only discover them from lists of candidates, whether
they employ supervised or unsupervised learning, and their
features.

2.1 Probabilistic vs. Non-Probabilistic
Probabilistic approaches include HMM [6], weighted finite

state transducers [8, 11, 10], and joint source-channel mod-
els [5], while the non-probabilistic include Perceptron [7] and
constrained optimization [4]. Probabilistic models incorpo-
rate probability distributions as parameters, and may be
generative (modeling the joint distribution of both the words
to be transliterated and the transliterations) or discrimina-
tive (modeling transliteration alone and taking the source
words as given). Note that whether a probabilistic model is
generative is orthogonal to whether the model is capable of
generating transliterations (as discussed next), despite the
overlap in terminology. Non-probabilistic models depend on
other parameters typically referred to as weights, and can
be seen as analogous to discriminative probabilistic models
in that they find transliterations for a given word (maximiz-
ing “score” rather than probability) but cannot “generate”
source words or word pairs.

2.2 Generation vs. Discovery
Discovery, selecting the correct transliteration from a rela-

tively small list of candidates, is a much easier task than gen-
eration, where the transliteration is created “from scratch”.
While some probabilistic methods (including ours, [6] and
[1]) are capable of both, the remainder–and all non-probabilistic
models–are limited to discovery alone. Generation is impor-
tant in two cases: when a candidate list does not contain
an esoteric or novel transliteration, or when the candidate
list grows very long. When we perform discovery for Russian
with the full, 47332 word candidate list from [7], for instance,
each iteration of EM with 2778 training pairs takes about
ten seconds, but finding predictions for the 727 evaluation

words takes roughly seven hours, a problem also observed
by [2]. In such cases we can avoid testing each candidate
word by instead generating a list of transliterations and se-
lecting the highest-probability possibility also appearing in
the candidate list (checked with a constant-time lookup on
a hashtable).

2.3 Supervised vs. Unsupervised
Most methods are fully-supervised with a minimum of sev-

eral thousand labeled examples. Some models (e.g. [12])
may alternatively require prior knowledge of the source and
target language phonetics. However, [7] uses an “almost un-
supervised” setting with twenty labeled examples and takes
advantage of the temporal alignment within a multilingual
corpora to learn its parameters. [2] forgoes any word pairs
and instead uses Romanization tables and expert knowledge
in the form of constraints. By contrast, we use labeled exam-
ples, but extract them automatically from Wikipedia. Given
the size and coverage of Wikipedia (there are currently 27
languages with more than 100,000 pages each, and 89 with
at least 10,000), this means such training pairs can be read-
ily obtained for most languages of interest.

2.4 Features
The most common features used in both the probabilistic

and non-probabilistic grapheme models are unigrams, bi-
grams, and trigrams, and possibly unigrams alone as in [2].
[1] and [6] use GIZA++ [9] to align source and target words,
which then allows them to map a sequence of English char-
acters to a single Arabic letters by considering the sequence
to be a “composite character”, though only the most fre-
quently occurring such “composites” are kept (the top 50
and top 100, respectively). [10]’s features are perhaps the
most relevant to our work, as they also use variable-length
substring to substring mappings to construct a transducer,
although the length is still limited at 4 for best performance.

3. OUR MODEL
Let S be the original word in the source language and T

be the transliteration in the target language, with a joint
probability of P (S, T) = P (T |S)P (S). When we predict a
transliteration, the source word is fixed, so P (S) is constant
and we instead seek to find a transliteration T for S such
that P (T |S) is maximized.

We conceptualize the transliterator, given S, as first se-
lecting a segmentation for S according to a distribution over
all possible segmentations, and then transliterating each seg-
ment independently according to a probabilistic mapping,
which then become the segments of the transliteration T .
For example, given the word “perelman” we can segment it
as per-el-man, perel-man, per-elman, etc. If we choose per-
el-man, we transliterate “per”, “el”, and “man”; after train-
ing our model for Hebrew, we have Pprod(!פר|per) = 0.9993,
Pprod(!ל|el) = 0.9145, and Pprod(!Nמ|man) = 0.9857, so the

probability of generating the correct transliteration (!Nפרלמ)
given this segmentation is proportional to the product of
these probabilities.

Let segW be a particular segmentation of a word W into
|segW | segments, where the ith segment of W is denoted as

segi
W , and let allW be the set of all 2|W |−1 possible seg-

mentations. Then allW,U = {(segW , segU) ∈ allW × allU :
|segW | = |segU |} is the set of all pairs of segmentations of

W and U where the number of segments in both is equal.
Then we can calculate P (T |S) as:

P (T |S) =
1

Z

∑

(segS ,segT)∈
allS,T

P (segS)

|segS |∏
i=1

Pprod(segi
T |segi

S)

where Z is the normalization constant, and Pprod(t|s) is the
probability of transliterating substring s as t.

Notice that for any particular segmentation of S, there are
many possible segmentations of T of the same length, so the
segments of segS may transliterate to T in multiple ways;
e.g. in whe-eler (,(וילר! “whe” may transliterate to either ו!
or וי! with varying probability, and “eler” may transliterate
to ילר! or .לר! Of course, different segmentations of S (e.g.
whe-eler and wh-eeler) can also ultimately produce the same
transliteration T . Because of this, we marginalize over all
possible segmentations of S and T (where the number of
segments is equal), effectively weighting each possibility by
P (segS). When a segi

S character sequence is unseen during
training, we may either assume that Pprod(segi

T |segi
S) = 0

or employ a smoothing mechanism as we did in our experi-
ments, discussed later.

This just leaves us with calculating P (segS), the probabil-
ity of a particular segmentation of S. Clearly, choosing a bad
segmentation is detrimental: wh-e-e-ler can map the first e
to ,י! but cannot produce an ל! from the second. Rather than
trying to learn a robust model for segmentation, however, we
adopt a simple approach, taking P (segS) ∝ c|segS |, where
c > 0 is a constant that determines the relative preference
for feasible segmentations with fewer segments (but note
that if |segS | > |T |, that segmentation is impossible since
there can be no mapping from each segment to at least one
character of T) . At c = 0.5, a segmentation containing one
segment is twice as likely as a segmentation with two seg-
ments, which is itself twice as likely as a segmentation with
three segments; at c = 1, all segmentations are equiprob-
able. Since the number of segmentations of length m in a
word of length n is

(
n−1
m−1

)
, a value of c = 0.5 does not mean

that the total probability of all segments of size k is twice as
much as those of size k-1, however. With c = 1, for exam-
ple, the total probability of segmentations of length n−1

2
is

greatest (assuming |T | ≥ n−1
2

). Now we can explicitly write
out P (T |S) as:

P (T |S) =
1

Z

∑

(segS ,segT)∈
allS,T

c|segS |
|segS |∏

i=1

Pprod(segi
T |segi

S)

In our experiments, we tried both values of both 0.5 and
1 for c, with relatively little difference (no more than a few
percent in accuracy). In general we found that a value of 0.5
yielded slightly better performance when generating translit-
erations by favoring fewer (and thus longer) segments that
had a greater chance of producing the exact transliteration,
but a value of 1 was slightly better in discovery because bias-
ing towards longer segments also encouraged the selection of
the wrong candidate when none of the candidates were exact
transliterations (this was particularly true for the Russian
evaluation data, where the nouns often had endings associ-
ated with their grammatical case that were independent of
the source word and not present in our training examples).
For clarity, all the results we report in this paper use c = 1.

Our algorithm for finding P (T |S) using our model is given
as Algorithm 1. We use the notation U [a, b] to refer to a sub-
string of string U starting from the character at index a and
ending with the character at index b (the first character in
a string being at index 1). The algorithm recurses to find
P (T [j +1, |T |] | S[j +1, |S|]), and implements dynamic pro-
gramming using a MemoizationTable to store the results of
these subproblems. As a result, the total number of recur-
sions is O(|S| · |T |), and as the amount of work in each call
is also O(|S| · |T |), the total time complexity is O(|S|2 · |T |2).

Additionally, we may also wish to generate translitera-
tions from a source word S. Our algorithm for finding the
k-highest probability transliterations is given by Algorithm
2, where k also serves as a pruning constant that limits the
amount of work done. The algorithm recurses O(|S|) times,
and does O(|S| · k2) work in each call, for a total time com-
plexity of O(|S|2 · k2). In practice we found that values of
k above 100 produced essentially identical results; conse-
quently, in our generation experiment, k = 100.

Algorithm 1 Finding P (T |S) with Dynamic Programming

Require: Production probabilities Pprod(t|s)
if (T, S) ∈ MemoizationTable then

return MemoizationTable(T, S)
else if |S| = |T | = 0 then

return 1 {base case, P (null|null) = 1}
else if |S| = 0 ∨ |T | = 0 then

return 0 {P (null|non-null) = P (null|non-null) = 0}
else

R ⇐ 0
for i = 1. . . |S| − 1 do

for j = 1. . . |T | − 1 do
O ⇐ c · Pprod(T [1, j] | S[1, i])
R ⇐ R+O ·P (T [j +1, |T |] | S[j +1, |S|]) {recurse}

end for
end for
MemoizationTable(T, S) ⇐ R
return R

end if

3.1 Training the Model
Our model is trained using Expectation-Maximization [3]

to iteratively update our Pprod(t|s) model parameters; we
discuss the initial parameters used in our experiments later,
in section 4.3. Before we present the formal definition and
derivation of our EM parameter update rule in the next sec-
tion, we first give a more intuitive description along with
the dynamic programming algorithm used to efficiently im-
plement these updates.

We learn from example pairs of words from the source
and target languages, (S, T). If we knew the “valid” seg-
mentations for each S and their corresponding segmenta-
tions for each T (i.e. the “alignments” between character se-
quences), finding the production probabilities for substrings
in the target (t) and source (s) languages, Pprod(t|s), would
be a trivial matter of counting. Unfortunately, we do not
have this information. While [1] and [6] use GIZA++ to
find alignments, we will instead take them as our latent
(hidden) parameters. In the expectation step, we use our
current parameters (the production probabilities) to assign
a probability to every possible alignment of S and T . Then,
in the maximization step, we simply count the number of

Algorithm 2 Generating Top K Transliterations for S

Require: Production probabilities Pprod(t|s)
Require: Pruning constant k

if S ∈ MemoizationTable then
return MemoizationTable(S)

else if |S| = 0 then
R ⇐ EmptyTable
R[“”] ⇐ 1 {P (null|null) = 1}
return R {base case}

else
for i = 1. . . |S| − 1 do

R ⇐ EmptyTable
Q ⇐ TopK(S[i + 1, |S|]) {recurse}
for all k-highest t ∈ Pprod(t | S[1, i]) do

for all a ∈ Q do
R[t + a] ⇐ R[t + a] + Q[a] · Pprod(t | S[1, i])

end for
end for

end for
Remove all but the k-highest entries from R
MemoizationTable(S) ⇐ R
return R

end if

each pair of aligned substrings, weighted by the probabil-
ity of the alignments in which they appear. Then, we sum
the weighted counts for each pair over all the training ex-
amples, and condition over the source substrings to get our
new Pprod(t|s) parameters.

Our training algorithm is presented as Algorithm 3. Each
alignment (a pair of segmentations, segS and segT , of equal
length) has a probability given by:

1

y
· c|segS |

|segS |∏
i=1

Pprod(segi
T |segi

S)

Where y is a normalization constant. For each training
example, we (in principle) find all such alignments and, for
each pair of substrings (s, t), find the sum of the probabil-
ities of all alignments that align s with t. Our algorithm
accomplishes this tractably by, as with prediction, memo-
izing the subproblems. The returned value is a pair, Q,
where Q[1] is the normalization constant y and Q[0] is a
table of substring pairs (s, t) and their associated (unnor-
malized) probabilities. These probabilities are normalized,
and then added to each substring pair’s overall count (over
all examples) is increased by that probability (so if, for an
individual example, the sum of all the probabilities of align-
ments in which a substring pair (s, t) appears is 0.4, the total
count for (s, t) is incremented by 0.4).

The algorithm recurses O(|S| · |T |) times, and does up to
O(|S|2 · |T |2) work in each recursion, giving a time complex-
ity of O(|S|3 · |T |3) for each training word pair. This may
appear relatively expensive, but we found it to be very fast
in practice, and training over several thousand pairs took at
most a few dozen seconds for each EM iteration.

3.2 EM Update Rule & Derivation
Let θ = {Pprod(t|s)} be our model parameters (all con-

ditional production probabilities), let our training source
and target word pairs be X = (S,T), and let n = |X|
be the number of such pairs. Additionally, let A = {a}

Algorithm 3 Finding Counts(S, T) for Training Pair (S,T)

Require: Current production probabilities Pprod(t|s)
if (S, T) ∈ MemoizationTable then

return MemoizationTable(T, S)
else if |S| = |T | = 0 then

return (EmptyTable, 1) {base case, P (null|null) = 1}
else if |S| = 0 ∨ |T | = 0 then

return (EmptyTable, 0) {P (null|non-null) =
P (null|non-null) = 0}

else
R ⇐ 0
C ⇐ EmptyTable
for i = 1. . . |S| − 1 do

for j = 1. . . |T | − 1 do
O ⇐ c · Pprod(T [1, j] | S[1, i])
Q ⇐ Counts(S[i + 1, |S|], T [j + 1, |T |]) {Recurse}
R ⇐ R + O ·Q[1]
C[S[1, i], T [1, j]] ⇐ C[S[1, i], T [1, j]] + R
for all (x, y) ∈ Q[0] do

C[x, y] ⇐ C[x, y] + Q[0][x, y] ·O
end for

end for
end for
MemoizationTable(S, T) ⇐ (C, R)
return (C, R)

end if

be the set of all possible alignments between all word pairs,
where a = (a1, a2, ..., an) and each ai ∈ allSi,Ti is a se-
quence of |ai| pairs of aligned substrings (u, v) that com-
prise a valid alignment for Xi. For example, given a word
pair Xk = (edgar, ,(אדגר! one possible value for ak would be
“ed-gar ⇒ .”גר!-אד!

Now, given a previous estimation of our parameters θ′ =
{P ′prod(t|s)}, our Q function is:

Q(θ|θ′) = EA|X,θ′ [logL(θ|X,A)]

The parameter set θ that maximizes this expected log like-
lihood is then given by argmaxθQ(θ|θ′), where each produc-
tion’s probability Pprod(t|s) is a normalized sum of all the
probabilities of all the alignments, weighted by how many
times the production occurs in each alignment:

Pprod(t|s) =
1

λs

n∑
i=1

∑
ai

#s,t(ai)P (ai|θ′)

=
1

λs

n∑
i=1

1

y′i

∑
ai

#s,t(ai)
∏

(v|u)∈ai

cP ′prod(v|u)

Where λs is a normalizing constant such that, for all
substrings s,

∑
t P (t|s) = 1, each y′i =

∑
ai

∏
(u,v)∈ai

c ·
P ′prod(v|u) is a per-word pair normalization constant that
ensures that

∑
ai

P (ai|θ′) = 1, and #s,t(ai) is the number
of times the production s ⇒ t occurs in a particular align-
ment ai.

Proof. To begin, we rewrite the Q function as a sum over
all possible assignments to the latent parameters a, weighted
by the probability of a and X given θ′.

Q(θ|θ′) = EA|X,θ′ [logL(θ|X,A)]

=
∑

a∈A

log(P (X, a|θ)) · P (X, a|θ′)

Consider now that any valid alignment ai ∈ a implies
Xi; for example, the alignment sa-rah ⇒ רה!-ש! implies the
word pair (sarah, .(שרה! Consequently, we have P (X, a|θ) =
P (X|a, θ) · P (a|θ) = 1 · P (a|θ), giving us:

Q(θ|θ′) =
∑

a∈A

log(P (a|θ))P (a|θ′)

=
∑

a∈A

log(

n∏
i=1

1

yi

∏

(u,v)∈ai

cPprod(v|u))P (a|θ′)

=
∑

a∈A

log(

n∏
i=1

∏

(u,v)∈ai

c

yi
Pprod(v|u))P (a|θ′)

=
∑

a∈A

(

n∑
i=1

∑

(u,v)∈ai

(log
c

yi
+ log Pprod(v|u)))P (a|θ′)

= (
∑

a∈A

(

n∑
i=1

∑

(u,v)∈ai

log
c

yi
)P (a|θ′))

+ (
∑

a∈A

(

n∑
i=1

∑

(u,v)∈ai

log Pprod(v|u))P (a|θ′))

Where yi is a normalizing constant ensuring
∑

ai
P (ai|θ) =

1. Notice, however, that now the first term of the Q func-
tion contains none of the θ parameters to be maximized, and
therefore we can drop this term to obtain a simpler Q′ such
that argmaxθQ

′ = argmaxθQ:

Q′(θ|θ′) =
∑

a∈A

(

n∑
i=1

∑

(u,v)∈ai

log Pprod(v|u))P (a|θ′)

Observing P (a|θ′) =
∏n

j=1 P (aj |θ′) and rewriting the sum-
mation over values of the alignment vector a as summations
over its components a1 . . . an, we have:

=
∑
a1

∑
a2

· · ·
∑
an

(

n∑
i=1

∑

(u,v)∈ai

log Pprod(v|u)) ·
n∏

j=1

P (aj |θ′)

=

n∑
i=1

∑
a1

∑
a2

· · ·
∑
an

∑

(u,v)∈ai

(log Pprod(v|u)) ·
n∏

j=1

P (aj |θ′)

Now we can “pull apart” the product
∏n

j=1 P (aj |θ′) and
reorder our summations as follows:

=

n∑
i=1

∑
ai

P (ai|θ′)
∑

(u,v)∈ai

(log Pprod(v|u))

·
∑
a1

P (a1|θ′)
∑
a2

P (a2|θ′) · · ·
∑
ai−1

P (ai−1|θ′)

·
∑
ai+1

P (ai+1|θ′) · · ·
∑
an

P (an|θ′)

We simplify this by noting that, for any k,
∑

ak
P (ak|θ′) =

1. So we have
∑

an
P (an|θ′) = 1, and then

∑
an−1

P (an−1|θ′)·
1 = 1, and so on, repeatedly “collapsing” these summations
until we are left with just:

=

n∑
i=1

∑
ai

P (ai|θ′)
∑

(u,v)∈ai

log Pprod(v|u)

=

n∑
i=1

∑
ai

∑

(u,v)∈ai

log(Pprod(v|u))P (ai|θ′)

To enforce the constraints that
∑

v Pprod(v|u) = 1 for all
u, we rewrite our equation as the Lagrange function F , with
λu as our Lagrange multipliers:

F =

n∑
i=1

∑
ai

∑

(u,v)∈ai

log(Pprod(v|u))P (ai|θ′)

−
∑

u

λu(
∑

v

Pprod(v|u)− 1)

Now we are ready to find the parameter set θ that maxi-
mizes Q′(θ|θ′). To do this, we first find the patrial derivative
of our Lagrange function with respect to each particular pa-
rameter Pprod(t|s) ∈ θ. All of the terms that do not include
Pprod(t|s) disappear, leaving us with:

δF
δPprod(t|s) =

n∑
i=1

∑
ai

#s,t(ai)
P (ai|θ′)

Pprod(v|u)
− λs

Recall that #s,t(ai) is the number of times the production
s ⇒ t occurs in the alignment ai. Next, we set the partial
derivative to 0 to find the maximum:

0 =

n∑
i=1

∑
ai

#s,t(ai)
P (ai|θ′)

Pprod(t|s) − λs

λs =

n∑
i=1

∑
ai

#s,t(ai)
P (ai|θ′)

Pprod(t|s)

Pprod(t|s) =

n∑
i=1

∑
ai

#s,t(ai)
P (ai|θ′)

λs

Pprod(t|s) =
1

λs

n∑
i=1

∑
ai

#s,t(ai)P (ai|θ′)

Finally, we expand P (ai|θ′) = 1
y′i

∏
(v|u)∈ai

cP ′prod(v|u):

Pprod(t|s) =
1

λs

n∑
i=1

1

y′i

∑
ai

#s,t(ai)
∏

(v|u)∈ai

cP ′prod(v|u)

Which gives us our update rule.

4. EXPERIMENTAL SETUP AND DATA
We evaluated our model over three preexisting sets of

data:

1. A set of 74,396 English-Chinese word pairs taken from
a transliteration dictionary [2]

2. A set of English-Russian word pairs with 727 English
words and multiple possible Russian transliterations
for each, and a total of 50,648 candidate words [7]

3. 550 English-Hebrew word pairs split into a 250 word
training set and 300 word test set [4]

4.1 Wikipedia Data
In the case of Russian and Hebrew, we also gathered ad-

ditional training pairs from Wikipedia with a filtering algo-
rithm. We exploit the fact that many articles have special
links to the same article in other languages which can be
identified by the language code prefix. For example, Bill
Clinton’s article contains a link to the Hebrew version of
the article as [[he: !Nקלינטו ,[[ביל easily identified by the “he:”
prefix.

1. First, we obtained the English, Russian and Hebrew
Wikipedias, available from download.wikipedia.org.

2. Then, in the English Wikipedia, we identified all the
articles that were about people, which we took as those
articles in the “[year] deaths” or “[year] births” cate-
gories and those that had {{persondata}} metadata
in their wikitext. The goal in restricting ourselves to
people is that person names are usually transliterated
between languages, whereas other terms (such as coun-
tries, cities, and concepts) are frequently translated.

3. Next, we looked for articles in all Wikipedias that had
alternate versions in our languages of interest. In the
English Wikipedia, we looked for people articles with
Hebrew and Russian versions, and in the Hebrew and
Russian Wikipedias we looked for articles that had En-
glish versions that were about people. This gave us a
list of English-Russian and English-Hebrew pairs of ar-
ticle titles.

4. The title pairs are not directly usable; the number of
words in each title may be different, and the ordering
may be different. Instead, for each two titles, we look
at all the possible word pairs between them; for Bill
Clinton, this would be (Bill, ,(ביל! (Bill, !Nקלינטו), (Clin-

ton, (ביל! and (Clinton, !Nקלינטו), assigning to each pair
10 points if both titles have exactly one word, 5 points
if both titles have the same number of words, and 1
point if the titles have different number of words.

5. We then sum the scores over all the title pairs. If a
word pair (x, y) has a score of at least 15 and at least
three times the score of any other pair containing either
x or y, then we add it to our list of training examples.

Using this method, we were able to obtain 2862 English-
Russian and 1166 English-Hebrew word pairs, although some
noise did remain. Two common causes were different names
for the same person (an English article might use Louis,
while a Russian might use Ludwig) or different variants of
the same name (Ovid in English versus Ovidius in Hebrew).
While this may make this data unsuitable for reliable evalu-
ation, it still performs well as a set of easy-to-obtain training
examples.

It is worth observing, however, that this method would
have a harder time on languages that traditionally lack spac-
ing between words. We also tried gathering English-Chinese
word pairs (which we did not use in our experiments) by
extracting only those Chinese titles that had the separating
dot • often found in foreign transliterated names, but only
obtained 384 examples. This could be rectified with a Chi-
nese word segmentation tool, but a more robust approach
would be to first use a small number of examples extracted
as above, then train the model, and then use the model to

evaluate every possible pairing of the words from the En-
glish title and each possible segmentation of the Chinese
string, keeping those pairs which are high-probability and
effectively bootstrapping the model; we have not yet tried
this, however, and leave it to future work.

4.2 Performance Measures
We used two performance measures in our evaluation. The

first is accuracy, which is simply the percentage of predicted
transliterations that were exactly correct. The second is
mean reciprocal rank (MRR). For each test example, we
produce an ordered list of candidates (or generated words,
in the case of generation) for the source word. The rank
R for the example is the position in the list of the correct
transliteration, ranging from 1 (the first word) to the number
of candidates (the last word). Thus for n test examples we
have:

MRR =
1

n

n∑
i=1

1

Ri

4.3 EM Initialization and Stopping Conditions
We initialized our Pprod(t, s) parameters for EM by simply

counting the number of training examples each substring
pair could align and then normalizing. For instance, if (“rel”,
(רל! could align in 50 training examples, then the count for
the pair would be 50; if there were 100 possible alignments
for “rel” in total, our initial Pprod(!רל|rel) = 50/100 = 0.5.

The other question when running EM is when to stop. In
each of the experiments we ran, we randomly selected a por-
tion of the training data as a holdout set, trained the model
on the remaining data, and then recorded the performance
on the holdout set after each iteration of EM and found the
iteration with the highest accuracy and, in the event of a
tie, the highest mean reciprocal rank. Then, to evaluate,
we trained on the entire training set (including the holdout
set) and ran EM for the same number of iterations before
performing predictions over the evaluation data.

4.4 Smoothing
For the Hebrew data, especially when we train on just the

250 training examples of [4], data sparsity makes smoothing
necessary to ameliorate situations where the transliteration
cannot be identified because the source word contains sub-
strings that were never seen during training (for example,
if we were to transliterate “Sarah” but had never seen “Sa”
or “ar”). In the case of Russian, we have a slightly different
problem, in that many of the “transliterations” for the En-
glish words in the test set have a noun case suffix attached
(such that they are no longer exact transliterations of the
English word), e.g. Edward is paired with здварда. Since
the Wikipedia-sourced training data included Russian words
without such suffixes, without smoothing the model may not
be able to align a final “d” with a “да” because such a map-
ping is never seen in training, or, if it is, it is (correctly) set
to 0 probability after several iterations of EM.

We thus use smoothed conditional probabilities P s
prod(t|s)

such that, for any t and s, P s
prod(t|s) = max(Pprod(t|s), γ|s|),

where γ ¿ min Pprod(t|s) is an arbitrarily low positive con-
stant, even if an s ⇒ t production was never observed dur-
ing training. Note that, since there are in principle an infi-
nite number of possible t for any given s, this would make

Table 1: Chinese Results
Model Accuracy MRR
Ours 0.958 0.966
[2] 0.847 0.899

∑
t Pprod(t|s) = ∞; we resolve this by observing that, for

any finite set of training and test data, the number of possi-
ble productions is also finite, and so γ can be set sufficiently
low to yield a distribution. In our discovery experiments,
we use γ = 10−10. Smoothing ensures that, where possible,
the model will select those candidates that can be produced
from the source word without using 0 probability “impos-
sible” productions (since γ is arbitrarily low) but, when no
such candidates exist, those that can be produced from the
source word with the fewest characters involved in “impossi-
ble” productions will be preferred. For example, the model
can now identify здварда as the correct transliteration for
Edward because now P s

prod(да|d) is 10−10 rather than 0.

4.5 Bi-Directionality
When we evaluate a pair of words S and T, we may not

know whether S generated T or whether T generated S.
Many English names, for instance, are transliterated from
Hebrew (e.g. Abraham, !Mאברה). Because our conditional
model is directional (P (S|T) 6= P (T |S)), for our discovery
experiments we learn both P (S|T) and P (T |S), and take the
probability of T being a transliteration of S (or vice versa) as

the geometric mean:
√

P (T |S)P (S|T). Relative to relying
on P (T |S) alone, we found that this bi-directional approach
improved accuracy several percent on the test data sets.

5. RESULTS
We compare against three different approaches: [7]’s weakly-

supervised model (Russian), [4]’s supervised model (Hebrew)
and [2]’s constraint-driven model using Romanization tables
and expert knowledge (Hebrew, Russian and Chinese).

5.1 Chinese
As [2] did, we randomly selected 600 evaluation pairs and

then added another 100 candidate words, for a total of 700
candidates. We then used the remaining 73,696 pairs to
train. Our results, along with [2], are shown in table 1,
showing an approximately 11% increase in accuracy and a
0.067 increase in MRR. It must be noted that [2] does not
learn from the (vast) numbers of training examples available
in a supervised fashion as we do, although it does use ex-
pert knowledge in the form of numerous constraints and a
Romanization table.

5.2 Russian
For Russian, we used the evaluation data of [7], 727 En-

glish words and possible Russian transliterations for each,
along with a vast candidate set of 50,648 words. We also
considered two additional derived subsets: the subset of 300
words and corresponding 300 candidates also used by [2],
and the same subset of 300 words with 1000 correspond-
ing candidates (each English word having, on average, 3.3
Russian transliterations).

A major concern with the Russian data set is that the
Russian transliteration lists for each English word are quite

Table 2: Russian Results. Test Set is the number of
English words and number of Russian candidates.

Model Test Set Accuracy MRR
Ours 727/50,648 0.846 0.893
[2] 727/50,648 0.73 Not reported
[7] 727/50,648 0.63 Not reported

Ours 300/300 0.930 0.950
[2] 300/300 0.900 0.931

Ours 300/1000 0.980 0.984

Table 3: Hebrew Results. Training Set gives the
number of training examples used, where applicable.

Model Training Set Accuracy MRR
Ours (Discovery) 250 0.953 0.970
[2] (Discovery) N/A 0.850 0.899
[4] (Discovery) 250 Not reported 0.894

Ours (Discovery) 1466 0.987 0.992
Ours (Generation) 1466 0.397 0.505

noisy; although they usually contain the correct translitera-
tion, they often contain numerous other, incorrect Russian
words, or the correct word but with a noun case suffix added
(these suffixes add additional phonemes that are indepen-
dent of both the Russian transliteration and the English
source word). The reason for the smaller, 300 words with
300 candidates set used by [2] was primarily because test-
ing with fifty thousand candidates is a large computational
hurdle (it takes our model about seven hours), but it also
provides an interesting look at how performance improves
as the candidate set shrinks. The problem with this sub-
set, though, is that each English word is paired arbitrarily
with one of its possible transliterations from the noisy list
of possibilities, resulting in many bad pairs. To correct this,
we also tried adding in all the transliterations for each En-
glish word as candidates for 1000 candidate words total; as
we suspected, although the ratio of candidates to “correct”
transliterations remains the same (both being increased by
a factor of 3.3), performance greatly improves. Our results,
and those of the other methods, are show in table 2.

Over the entire evaluation set (with all 50,648 candidates)
we have improved accuracy by 11.6% over [2], although we
used 2862 training examples that were automatically col-
lected from Wikipedia as described earlier. Our results on
the smaller set of 300 evaluation words with 300 candidates
are only 3% higher in accuracy, but this seems to be because
the heavy noise in the data imposes a performance ceiling.
When we increase the number of candidates to combat this,
we gain 5% accuracy to reach 98%.

5.3 Hebrew
For Hebrew we trained on the 250 example training set of

[4] as well as a combined set of those 250 examples and the
1166 examples automatically collected from Wikipedia, eval-
uating over a set of 300 pairs. Here we can directly compare
to [4], a supervised method trained on the aforementioned
250 examples, although [2]’s result is in fact slightly bet-
ter. Since we had a relatively noise-free test set, we also at-
tempted the much harder task of generating the 300 translit-

erations rather than selecting them from the candidate list.
Results are shown in table 3.

Training on the same data, we improve more than 0.075 in
MRR compared to [4] and, compared to [2], boost accuracy
by more than 10%, and incorporating data from Wikipedia
adds another 3.4% to this figure. Our results for generation
are much lower, but that is expected–generation requires
producing the correct transliteration exactly, a feat that is
difficult to achieve with high accuracy without a much larger
training set.

6. CONCLUSION
It is clear that word-by-word transliteration has some in-

herent limitations; as [8] points out, for example, attempting
to transliterate Catalina or Katarina from Katakana (which
does not distinguish “r” and “l”) is impossible without con-
text. More generally, words in any language may have vary-
ing pronunciations or multiple valid transliterations into a
given language, and many words we wish to “transliterate”
fall somewhere between true transliteration and outright
translation, such as the names of countries (England and
.(אנגליה! We have nevertheless have demonstrated a model
that has both high absolute performance and compares very
favorably to several state-of-the-art systems, with accura-
cies more than 10% higher than those previously obtained,
and shown how it can be trained with examples automat-
ically collected from Wikipedia. Also important is that it
is a truly language-agnostic “universal transliterator”: no
language-specific design elements are incorporated, and it
is capable of handling quite diverse languages with good re-
sults, as our experiments with Chinese, Hebrew and Russian
have collectively demonstrated.

Acknowledgments
The authors would like to thank Alex Klementiev, Dan Gold-
wasser, and Ming-Wei Chang for making their data available
to us and providing numerous clarifications, and for Alex’s
assistance with the Russian language. This research is partly
supported by MIAS, a DHS Center for Multimodal Informa-
tion Access and Synthesis at UIUC.

7. REFERENCES
[1] N. Abduljaleel and L. Larkey. Statistical

Transliteration for English-Arabic Cross Language
Information Retrieval. In CIKM, pages 139–146, 2003.

[2] M. Chang, D. Goldwasser, D. Roth, and Y. Tu.
Unsupervised Constraint Driven Learning For
Transliteration Discovery. In Proc. of the Annual
Meeting of the North American Association of
Computational Linguistics (NAACL), May 2009.

[3] A. Dempster, N. Laird, D. Rubin, et al. Maximum
Likelihood from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[4] D. Goldwasser and D. Roth. Transliteration as
Constrained Optimization. In Proc. of the Conference
on Empirical Methods for Natural Language
Processing (EMNLP), pages 353–362, Oct 2008.

[5] L. Haizhou, Z. Min, and S. Jian. A Joint
Source-Channel Model for Machine Transliteration. In
Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics.

Association for Computational Linguistics
Morristown, NJ, USA, 2004.

[6] M. Kashani, F. Popowich, and F. Sadat. Automatic
Transliteration of Proper Nouns from Arabic to
English. The Challenge of Arabic for NLP/MT. In
Proceddings of International conference at the British
Computer Society, 2006.

[7] A. Klementiev and D. Roth. Weakly Supervised
Named Entity Transliteration and Discovery from
Multilingual Comparable Corpora. In Proc. of the
Annual Meeting of the ACL, pages USS, TL, ADAPT,
July 2006.

[8] K. Knight and J. Graehl. Machine transliteration.
Computational Linguistics, 24(4):599–612, 1998.

[9] F. J. Och and H. Ney. A Systematic Comparison of
Various Statistical Alignment Models. Computational
Linguistics, 29(1):19–51, 2003.

[10] T. Sherif and G. Kondrak. Bootstrapping a Stochastic
Transducer for Arabic-English Transliteration
Extraction. In ACL, volume 45, page 864, 2007.

[11] B. Stalls and K. Knight. Translating Names and
Technical Terms in Arabic Text. In Proceedings of the
COLING/ACL Workshop on Computational
Approaches to Semitic Languages, pages 34–41, 1998.

[12] T. Tao, S. Yoon, A. Fister, R. Sproat, and C. Zhai.
Unsupervised Named Entity Transliteration Using
Temporal and Phonetic Correlation. EMNLP, pages
22–23, 2006.

