FEX User Guide
Version 1.2

Chad Cumby, Wen-Tau Yih

April 21, 2003

Part 1: Basics

Fex is a 'feature extractor’ utility which can process a prepared corpus and produce a file of SNoW
compatible examples.
The basic command-line for invoking Fex is as follows:

fex [options] script-file lexicon-file corpus-file example-file

The 4 files must all be specified, except in ”server” mode in which case only the first 2 are specified.
The script file contains a set (1 or more) of feature generation specifications. The corpus file
contains an input corpus prepared in a specified format from which examples will be generated.
The lexicon contains the mappings from features to IDs used by SNoW. And the example file is an
output file where the generated examples are written.

The script file is formatted with each feature generation specification on its own line in the file.
Each specification must be a valid sentence in the feature extraction language as described below
in part 2.

The feature extractor uses the script to generate a single example for each occurence of a ‘target’
in the corpus. The example is formed by taking the union of all features generated by the script.

Input Formats

There are two main input formats that Fex will accept. The first is a general linear format where
the corpus file should contain the prepared input with a single ‘sentence’ per line. When generating
examples, Fex never crosses line boundaries of the corpus file. So even if the window specification
is 'wider’ than the current line, it does not 'wrap’ to the next (or previous) line. This also means
that it is possible to use Fex to produce examples which span several sentences, given that they are
combined into a single line. Fex could then be used to extract features for Information Retrieval
tasks.

This general linear format can take one of 3 forms. The first form is simple text, each white space
delimited sequence of characters is treated as a word. Tag sets are empty. No special treatment of
punctuation is provided, so this must be done by some form of preprocessing if necessary.

The second form is tag/word pairs. Each pair consists of an open parenthesis, the tag, the word
and a closing parenthesis.

The third form is a more general form of the second in which rather than a single tag and word
there is a tag set and a word set. A semi-colon ‘;” delimits the end of the tag set from the start of
the word set.

Since the parenthesis and semi-colon are tokens to the fex parser, if they are to be included
in a word or tag they are "escaped” with the back-slash ¢\’ character. Hence the back-slash itself
must be escaped. In general any character immediately following a back-slash is treated as a literal
character and not a special token.

Finally, the input may include any combination of form 1, 2 and 3 input for each index of the
input sentence. For example the following is legal input to fex:

wi w2 (pl w3) w4 (pl p2 p3; \D\;) (p4 p5; w6 w7) w8 (. .)

which is parsed as follows:
index tags words

0 <empty> wl

1 <empty> w2

2 pl w3

3 <empty> w4

4 pl p2p3);

5) p4 pd w6 w7
6 <empty> w8

7

The second main input format is a column based table of records, with each record corre-
sponding to a single word or data element. Each sentence or example in the corpus is denoted
by a set of records separated by blank lines. In this way it is similar to the ouput produced by
the FDG and ILK parsers. The following is an example of a valid sentence in this input format:

0001 1 0 I-NP NNP Pierre NP-SBJ join 8
0001 1 1 INP NNP Vinken NP join 8
0001 1 2 O COMMA COMMA NOFUNC Vinken 1
0001 1 3 I-NP CD 61 NP-SBJ years 0
0001 1 4 I-NP NNS years NP old 5
0001 1 5 I-ADJP JJ old ADJP Vinken 1
0001 1 6 O) , NOFUNC Vinken 1
0001 1 7 I-VP MD will AAA join 8
0001 1 8 I-VP VB join M-V join -1
0001 1 9 I-NP DT the NOFUNC board 10
0001 1 10 I-NP NN board NP join 8
0001 1 11 I-PP IN as ADJ join 8
0001 1 12 I-NP DT a NOFUNC director 14
0001 1 13 INP JJ nonexecutive NOFUNC director 14
0001 1 14 I-NP NN director NP as 11
0001 1 15 B-NP NNP Nov. NOFUNC 29 16
0001 1 16 I-NP CD 29 NP-TMP join 8
0001 1 17 O . a=b NOFUNC join 8

Each column of the input corpus corresponds to an attribute of a single data element, in this
case a word. As Fex is designed to process language data, each column has a set name derived from
the type of data placed in that column by the ILK parser. This named field is used by the Feature
Extraction Language described below to extract features. The first three fields are header fields
with the first two defined as dummy fields and the third as the index of the word in the senetence.
The next 7 fields are used by Fex to extract features. They are: Phrase, Tag, Word, Role, Role

2

Pointer Value, and Role Pointer respectively. However, in general other data could be placed in
each of these columns depending on the problem domain, as long as the user realizes that the same
field names must be used in the Feature Extraction Language.

Above, the first record in the corpus contains information about the word with index 0. The
Phrase field contains the value "I-NP” to designate that it is part of a noun-phrase. The Tag field
contains the value "NNP” to designate that the word is a proper noun. The Word field contains
the value ”Pierre” as that is the word the record refers to. The Role field contains the value ” NP-
SBJ” to designate that the word is the subject of the sentence. The Role Pointer Value field holds
the value ”join” and at this point is not actually used, because the Role Pointer field holds the
same basic information. The Role Pointer field contains the value 8 because as the subject of the
sentence, in a verb-rooted parse tree, it would point to the main verb of the sentence, which is
index 8.

Each column of the table must be filled for each record if the input is to be parsed correctly.
Thus a special null-token is defined. This null-token can be indicated for any column with the word
"NOFUNC”

Part 2: Extraction Language

Fex operates on a representation of an observation. Currently, an observation is a list of active
records, where each record contains k fields. Each of the fields is a set of a variable number of
values. The possible fields are called: Word, Tag, Phrase, Role, and Role-Pointer respectively.

Given an input of this form, Fex evaluates Feature Functions. Namely, given an observation and
a collection of relational definitions that define types of features, Fex computes the instantiation of
the Relation Generation Functions that are active in the observation, indexes them, and re-writes
the observation as a list of active features.

The purpose of this section is to define the language used in the Relation Generation Functions,
its interpretation, and a set of relational definitions that is currently used.

The basic syntax of a sentence in the feature extraction language is as follows, with words in
square brackets ([]) optional:

targ [inc] [locl: RGF [[left-offset, right-offset]]

targ - Target index or word (potentially a relation). If -1 is specified, fex will treat each record
in the sentence as a target and extract features for that record.

inc - Use the actual target (word or tag) instead of the generic place-holder (**’), so that features
match only for the exact target.

loc - Include location of feature relative to target.

RGF - A valid Relation Generation Function defined in terms of a Basic RGF or a Complex RGF
composed of Basic RGFs. (described below)

left-offset - Left edge of window for generating features. Negative values are left of target,
positive to the right. If the left and right offsets are omitted in a feature definition, Fex will
extract features from each record in the entire sentence with respect to the target.

right-offset - Same as left-offset except specifies the right edge.

Basic Relation Generation Functions

The basic building block for a RGF is a unary Sensor. A Sensor operates on a single record with
respect to a specific location, and evaluates to either True of False. When it evaluates to True
(namely, the feature type is active in the observation) it outputs the instantiation of the feature
type in the observation. Examples of Sensors:

Type Definition Mnemonic Interpretation Output

Word W always active wlword in current position]

Tag t active if Tag is t [tag in current position]
supplied

Role r same r[role in current position]

Vowel v active if the Word in v([]

the current record
starts with a vowel

Prefix pre active if the Word in the pre [The active prefix]
current record starts with
one of the patterns in a

given list.
Suffix suf As above suf [the active suffiz]
Base_tag base active as the baseline basel[active base_tag]

tag of the Word

in the current record.
(requires a file that has
a list of baseline tags
indexed by words)

Lemma lem active as the lemma of the lem[active lemmal
Word in the current record
Phrase phr produces active features phr [active phrase/

for each Phrase attribute
present in the sentence

In addition, the user has the ability to designate a specific instantiation of the Sensor as a
parameter, which will only generate features when that instance is present in the current record.

For example, the feature w(boat) will be active if the current record contains the word boat.
Such a parameter can be supplied to any of the Basic RGF's like so:

-1 : w(x=boat)

The lab RGF is a special function that takes any RGF as an argument and produces a feature
with a 1ab tag appended to the feature produced by the argument RGF. This feature will have a
lower feature ID (1-1000), and can be used to distinguish a target feature from the normal feature
if multiple targets appear in the same sentence.

There are potentially many other unary Sensors that can be defined on an observation.

4

Complex RGF’s

In addition to the Basic Relation Generation Functions, four Complex RGF’s have been defined as
compositions of the unary feature functions.

They are:

the conjunction operator ‘&’, the disjunction operator ‘|’, coloc, and scoloc.

& - Used to specify a feature which is active only in a record only when two or more Basic Relations
are active. For example, the relation

w&t
is active as the combination of a record’s Word and Tag and is written in the lexicon as:

wlword active in record] &t [tag active in record]

| - Used to specify the union of the sets of features which are active when any of two or more Basic
Relations are active within the record. For example, the relation
W[t
is active as the both the record’s Word and the record’s Tag and two features are written into
the lexicon as:

wlword active in record]
t[tag active in record]

coloc - Specifies a consecutive collocation of RGF’s active over two or more records. This RGF
takes a parameter in the form of a list of DNF expressions defined using the & and | operators
and other RGF’s. For example:

coloc ((Ri1lR2), R1)

outputs consecutive conjunction of size 2, of the form R; R; or Ry R; (that is, in the i-th
word R; is active and in the i+1 word R; is active, or in the i-th word Ry is active and in
the i+1 word R; is active).

scoloc - Sparse collocation of RGF’s active over two or more records. Parameter same as above.

Examples

In this section several different script specifications will be shown along with the features generated
by each specification. For all examples features will be extracted from the following sentence:

(t0 the) (t1 o0ld) (t2 man) (t3 went) (t4 to) (t5 the) (t6 store)

Example 1

2: w [-2,2]

features:

wlthel, wlold], wlwent], w[tol

Example 2

2: w&t [-2,2]

features:

wlthel&t[t0], wloldl&t[tl], wlwentl&t[t3], wltol&t[t4]

Example 3

the:

wlv [-2,2]

features:
wlold], wlman], wlwent], wl[to], wlstore]l, v[+]

Example 4

2 loc: coloc(w,t) [-2,2]

features:

wlthe *]-t[t1*], wlold*]-t[*], w[*]-t[*t3], wl*went]-t[*_t4]

Example 5

2 inc loc: coloc(w,t) [-2,2]

features:

wlthe_*man*] -t [t1*t2*], wlold*man*]-t[*t2*], w[*man*]-t[*t2*t3],
w [*man*went] -t [*t2*_t4]

Example 6

2 inc: scoloc(w,t) [-2,2]

features:

wlthel-t[t1], wlthel-t[t2], wlthel-t[t3], wlthel-t[t4], wlold]l-t[t2],
wlold]-t[t3], wlold]-t[t4], wlman]-t[t3], wlman]-t[t4], wlwent]-t[4]

Part 3: Command-Line Options

-h
-i

-J

-p :

histogram file : Produce Histogram file with counts for each word in the data.
historgram file : Produce Histogram file with counts by feature.
statistics file : Produce Statistics file with Chi? values for each feature.

Column input format. If set, the input corpus will be parsed as the second column-based
input format detailed in section 1.

length : Activate Phrase Extension. See Appendix A.

: Read-only Lexicon. Only features already present in the Lexicon will be written to examples,
and the Lexicon will not expand to include new features.

port : Server Mode. Fex will run in server mode accepting socket connections on the given
port number. Do not provide a corpus filename when running in this mode. When connecting
to the Fex server, provide input sentence by sentence in this format:

stopwords file : Stop words. use this option with a stopword file to designate a list of words
which Fex will ignore when creating features.

target file : Use target file instead of script specification to determine targets and target
indices to use in extracting features from each sentence. A target file must consist of a list of
target words each on its own line of the file.

6

-T target file : Modified target file option. Like above, except that each target in the targetfile
will be used in only one example corresponding to that target’s position in the sequence.

-u : Set raw input option. If set, the input corpus will be parsed using the linear input format
detailed in Section 1, but each string or token will be parsed as a word.

-v verbosity : Set verbosity. options are:
max - maximum verbosity: script structure, target indices, features extracted, and examples

constructed will all be displayed to standard out along with the basic version info.

med - medium verbosity: script structure, and examples constructed will be displayed to
standard out along with the basic version info.

min - minimum verbosity: only the basic version info will be displayed.

off - no information or output will be displayed to standard out.

Part 4: Tutorial

This tutorial is designed to guide the user through a practical application of the Fex feature extractor
and the corresponding feature extraction language. It will include an explanation of how to set up
training and test corpora, creation of a script, and the output written to the lexicon and example
files - all from the perspective of a part-of-speech tagger. Through this demonstration, the concepts
behind the specific constructions used in the feature extraction language should become clear.

POS Tagging

Part-of-speech tagging is the process of assigning each word in an input sentence its correct part-of-
speech in context. The task of Fex in this process is to convert the initial word-based representation
of the sentence into a feature-based representation recognizable by SNoW. Two sets of examples
must be generated - one for training and one for testing. Thus, the first step is to produce the
example file

traindata.feat

To train a POS predictor, it is necessary to produce a separate example for each word in the
tagged training corpus, using the existing tag of each target word as the label for each example.
To do this we create a new script file named

pos.scr

and there insert the specification line

-1: lab(t)

The -1 portion of the specification signifies that an example is to be created for each word in
the input sentence. The lab portion is a RGF keyword specifying that a feature corresponding to

a target label should be generated for each example. The (¢) portion is an argument to that RGF
specifying that the label generated should be the POS tag of the target word.

The next step in creating the training file is to choose the types of features that would be most
useful in trying to learn the correct part-of-speech for a given target in a given sentence. For this,
we look to (Roth & Zelenko, 1998) as a guide. In this study, the features used were described
thusly:

1. The preceding word is tagged c.
2. The following word is tagged c.

The word two before is tagged c.

L

The word two after is tagged c.

The preceding word is tagged ¢ and the following word is tagged t.
The preceding word is tagged ¢ and the word two before is tagged t.
The following word is tagged c and the word two after is tagged t.

The current word is w.

© »®» N o w

The most probable part of speech for the current word is c.

All of these feature definitions can be easily represented in the feature extraction language of Fex.
To generate those features defined by rules 1-4 above, we add this line to the already existing
script file:

-1 loc: t [-2,2]

This specification indicates that Fex should generate features treating every word in the sentence
as a target, by the -1 token. Additionally, the Sensor RGF't indicates that the features generated
should consist of the POS tags from the tagged training corpus. The range portion [-2,2/ signifies
that the POS tags extracted will be the tags two before, one before, one after, and two after the
target position. The tag of the target position does not generate a feature since the inc flag is not
included in the specification.

Rules 5-7 defined above requires its own line in the script:

-1: coloc(t,t,t) [-2,2]
With this line, we designate that three term colocations of POS tags should be generated within

a (-2,2) interval around the target position. The target position within each colocation will be
represented by the ”*” placeholder. For example, if the input sentence were:

(t1 The) (t2 car) (t3 drove) (t4 very) (t5 quickly) (. .)
Then the features generated from this specification would be:
tlt1]-t[t2]-*

t[t2] -*-t [t3]

-t [t2] -t [t3]

For the eighth definition, we add this line: -1 inc: w [0,0]

As before, the -1 indicates that this feature is to be generated treating every word in the sen-
tence as a target. The addition of the inc flag before the colon indicates that the target word will
be used in the example instead of the general target-placeholder ”*”. The range of words extracted
by the w Sensor RGFis limited to only the word in the target position by the specification of the
[0,0] range.

In considering the ninth and final feature definition from Roth & Zelenko it becomes necessary
to define the meaning of Baseline tags. The Baseline tag of a target word is simply the most
common part-of-speech associated with that word. An external file must be prepared by statistical
analysis from a tagged corpus, containing a list of words with their Baseline tags. This list should
be of the format:

word tag

with each word-tag pair on a new line. Once such a file is prepared, it can be accessed by us-
ing the base Feature Function described in Part 2. The last feature definition then becomes:

-1 inc: base [0,0]

This will produce the most probable POS tag for the target word, centered in the range [0,0].
The inc flag must be set because the feature is being generated for the target position.

Appendix A: Phrase Extension

This extension is added to provide support for extracting phrase-type features. The extension only
accepts COLUMN format input. In addition, the first column is used to store phrase labels. The
second column is used to store named entity tags. Both these two use BIO format.

Usage: -P length

-P takes one argument, which stands for the maximum length of the candidate phrases. For
example, fex -P 4 will generate examples for every phase of length 1, 2 ,3 and 4 from the corpus
file. If length is equal to 0, then only positive examples will be generated.

Window Range

The meaning of offsets in window has been changed a little. Let me use the following example to
explain it.

Example - corpus:
wl w2 w3 W4 W5 W6 w7 w8 w9

Suppose that W4 W5 W6 is the target phrase. When the window is before the target (both
left offset and right offset are negative), it’s the same as usual. In other words, location -1 is w3,
location -2 is w2, and location -3 is wl. The positive location means the words after the target,
so location +1 is w7, +2 is w8, and +3 is w9. If the window is [0,0], then it means words from
the target phrase. For example,

-1: wl[0,0]

gives you word W4, W5, and W6.
When the window is outside the target phrase, the whole target is treated as a single location.
Therefore,

-1 loc: w[-2,-1]
-1 loc: wl1, 2]

will give you:
wlw2_*], wlw3d*], wl*w7], w[*_w8]

If the window is [0,0] and location information is included, then it will treat one word before
the targer phrase as the target and put an asterik after the generated output to denote it’s actually
from the target phrase. For example:

-1 loc: wl[0,0]
will generate
wlxWa]l*, w[*x_W5]*, wl*x__W6]x*

Windows that overlap the target phrase such as [-5,0], [0,4], [-2,2] are a little bit tricky.
In these cases, only the first word of the phrase is treated as the target location. If you want to use
this type of windows, make sure the output is really what you need.

Changes in RGF's

The syntax of 1lab has been modified a little. The parameters of lab will be ignored. In addition,
lab can have no parameter at all. That is, lab(w), 1lab(t), and lab are all the same.

Target files are not supported in this extension. Also, you can only use “-1”7 (all target) as the
target indication in each RGF.

Two phrase type sensors phLen and phNE are added. phLen returns the length and phNFE
returns the named entity tag of the target phrase. Basically, the window for these two new sensors
should always be [0,0]. For example, -1 phLen[0,0] returns 3 for the above corpus file, since
W4 W5 W6 contains 3 words.

A special complex RGF operator called conjunct is created. It takes any number of FULL RGF
statements, seperated by semicolons, as parameters. The output is the results of each subRGF
connected by “~”. For example,

conjunct(-1:w[-2,-1]; -1:phLen[0,0]; -1:w[1,2]) generates

w[w2]--phlen[3]--w[7], w[w2]--phLen[3]--w[8],
wl[w3]--phLen[3]--w[7], w[w3]--phLen[3]--w[8]

Examples

corpus file, corpl:

10

B-subj

B-term
I-term

0)
0)

corpus file, corpl:

B-subj
0O

O

0
B-term
I-term
O

O

script file, scrl:

-1: 1lab

-1 loc: wl1,2]
-1 loc: w[-2,-1]
-1 loc: wl[0,0]

conjunct(-1:w[-2,-1]; -1

fex -P 0 scrl lexl corpl

lexicon file, lex1:

1 label[subj]
1001 w[*I]=x*

1002 w[*_dealing]
1003 w[*am]

2 label[term]

B-Peop
O

O

O
B-Term
I-Term
O

0]

B-Peop
O

0]

0
B-Term
I-Term
O

O

NOFUNC
NOFUNC
NOFUNC
NOFUNC
B-NP
I-NP
NOFUNC
NOFUNC

N O U W N~ O

NOFUNC
NOFUNC
NOFUNC
NOFUNC
B-NP
I-NP
NOFUNC
NOFUNC

N O Ut W N = O

ex1

1004 wldealing]--phLen[2]--w[.]

1005 w[dealing]--phLen[2]--w[problems]

1006 w[with]--phLen[2]--w[.]
1007 wlwith]--phLen[2]--w[problems]
1008 w[*Information]*

1009 w[*_Extracti
1010 w[dealing *]
1011 wlwithx]
1012 wl*_.]

1013 w[*problems]

example file, ex1:

on] *

NNP
NNP
NNP
POS
NNP
NN

VBD

NNP
NNP
NNP
POS
NNP
NN

VBD

11

I

am

dealing
with
Information
Extraction
problems

I

am

dealing
with
Information
Extraction
problems

:phLen[0,0]; -1:w[1,2])

NOFUNC
NOFUNC
NOFUNC
NOFUNC
NOFUNC
NOFUNC
NOFUNC
NOFUNC

NOFUNC
NOFUNC
NOFUNC
NOFUNC
NOFUNC
NOFUNC
NOFUNC
NOFUNC

T T T T B R

ST T A R B RS

cloloNoRoNoNON®

COOOOO0OO0

1, 1001, 1002, 1003:
2, 1004, 1005, 1006, 1007, 1008, 1009, 1010,

fex -P 2 scrl lex2 corpl ex2

lexicon file, lex2:

1 label[subj]

1001 w[*I]=*

1002 w[*_dealing]

1003 w[*am]

2 label [IRRELEVANT]

1004 w[*_am]*

1005 w[*_withl]

1006 w[*dealing]

1007 w[I]--phLen[1]--w[dealing]

1008 w[I]--phLen[1]--w[with]

1009 w[*am]=*

1010 wlIx]

1011 w([I]--phLen[2]--w[Information]
1012 w[I]--phLen[2]--w[with]

1013 w[*_dealing]*

1014 w[*_Information]

1015 wl*with]

1016 w[I]--phLen[1]--w[Information]
1017 wlam]--phLen[1]--w[Information]
1018 wlam]--phLen[1]--w[with]

1019 w[*dealing]*

1020 w[I_x]

1021 wlamx]

1022 w[I]--phLen[2]--w[Extraction]
1023 w([am]--phLen[2]--w[Extraction]
1024 wlam]--phLen[2]--w[Information]
1025 wl*_with]*

1026 w[*Information]

1027 w[*_Extraction]

1028 wl[am]--phLen[1]--w[Extraction]
1029 wldealing]--phLen[1]--w[Extraction]
1030 w[dealing]--phLen[1]--w[Information]
1031 wl*with]=*

1032 wlam_x]

1033 wldealingx*]

1034 w[am]--phLen[2]--w[problems]

1035 wldealing]--phLen[2]--w[Extraction]
1036 w[dealing]--phLen[2]--w[problems]
1037 wl*_Information]*

1038 w[*Extraction]

12

1011, 1012,

1013:

1039
1040
1041
1042
1043
1044
1045

w[*_problems]

wldealing]--phLen[1]--w[problems]
w[with]--phLen[1]--w[Extraction]
wlwith]--phLen[1]--w[problems]

w[*Information]*
wldealing_x]
wwithx*]

3 label[term]
w[dealing]--phLen[2]--w[.]
w[with]--phLen[2]--w[.]

w[with]--phLen[2]--w[problems]

1046
1047
1048
1049
1050
1051
10562
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068

w[*_Extraction] *
wlix_.]

w [*problems]

wlInformation]--phLen[1]--w[.]
w[Information]--phLen[1]--w[problems]
wlwith]--phLen[1]--w[.]

w[*Extraction]*
w[Informationx]
wwith_*]

w[Information]--phLen[2]--w[.]

w[*_problems] *

wix*.]

w[Extraction]--phLen[1]--w[.]

w [*problems] *
w[Extraction*]
w[Information_x]
wlk_.]x*

wl*.]*
w[Extraction_x*]
w[problems*]

example file, ex2:

- - - - - -

-

- - - - -

N NDNDNDWDNDNDDNDNNDNNDNDNDNDR-

-

1001, 1002, 1003:

1001, 1004, 1005, 1006:
1005, 1006, 1007, 1008,
1009, 1010, 1011, 1012,
1008, 1014, 1015, 1016,
1011, 1019, 1020, 1021,
1017, 1026, 1027, 1028,
1023, 1031, 1032, 1033,
1029, 1038, 1039, 1040,
1036, 1043, 1044, 1045,
1042, 1050, 1051, 1052,
1047, 1055, 1056, 1057,
1062, 1060, 1061, 1062,
1062, 1063, 1064, 1065:

1009,
1013,
1017,
1022,
1029,
1034,
1041,
1046,
1053,
1058,
1063,

1010:
1014,
1018,
1023,
1030,
1035,
1042,
1047,
1054,
1059,
1064 :

1015:
1019,
1024,
1031,
1036,
1043,
1048,
1055,
1060:

13

1020,
1025,
1032,
1037,
1044,
1049,
1056,

1021:
1026,
1033:
1038,
1045:
1050,
10567

1027:

1039:

1061:

2, 1066, 1067, 1068:

Appendix B: Relation Extension

This extension is used to handle relations between entities of which the boundaries are konwn.
The data format it accepts is similar to the COLUMN format only with some slight changes. We
introduce the data format, changes in scripts, and some examples in the following subsections.

Data Format

Suppose we are given this sentence:
In 1904, bandleader Jimmy Dorsey was born in Shenandoah, Penn.

From this sentence, we know that the birthplace of a person (“Jimmy Dorsey”) is a place
(“Shenandoah, Penn.”). In other words, we have the relation birthplace(“Jimmy Dorsey”, “Shenan-
doah, Penn.”), and the entities person(“Jimmy Dorsey”) and person(“Shenandoah, Penn.”).

We use the following data format to represent this sentence.

corpus file, corp2:

O O 0 O IN In NOFUNC x O
O O 1 NP CD 1904 NOFUNC x O
O O 2 0 , NOFUNC x O
0O O 3 NP NN bandleader NOFUNC x O
O Peop 4 NP NNP/NNP Jimmy /Dorsey NOFUNC x O
O O 5 O VBD was NOFUNC x O
0O O 6 O VBN born NOFUNC x O
O O 7 O IN in NOFUNC x O
O Loc 8 NP NNP/,/NNP/. Shenandoah/,/Penn/. NOFUNC x O
4 8 birthplace

This representation contains four units:

e a sentence in column format (but the words and pos tags belonging to the same entity appear
in one row)

e empty line
e relation descriptors (may be empty or more than one line)
e empty line
In the COLUMN format here, only four columns are meaningful:
e col-2: Entity class label (e.g. Peop, Loc)
e col-3: Element order number (starting from 0)
e col-5: Part-of-speech tags
e col-6: Words
14

Other columns can simply be ignored.

Note that the pos tags and words of an entity are put in the same row separated by ¢/’ (e.g.
“NNP/NNP” in row 4 and “Shenandoah/,/Penn/.” in row 8). In other words, the boundary of
each entity (either in training or testing data) are assumed predefined.

A relation descriptor has three fileds.

e 1st field : the element number of the first argument.
e 2nd field : the element number of the second argument.

e 3rd field : the name of the relation (e.g. birthplace).

Extract features for entities

The parameter for extracting features from entities in a relation/entity corpus is “-R e”.

To extract features with respect to an entity, the syntactic change in scripts is to use “lab(ent)”
intead of “lab”, and the semantic change is obviously the respresentation of an entity. An entity is
considers as a set of words. In other words, the order of the words in the entity is not preserved.
It may be clear after seeing an example.

Suppose the script file is:

script file, scr2:
-1: 1lab(ent)
-1 loc: wl[1, 0]
Applying scr2 on corp2, Fex will generate the following lexicon and example files:

lexicon file, lex2:

1 labell[ent [Peop]]
1001 w[Jimmy]

1002 w[Dorsey]

2 label[ent[Loc]]
1003 w[Shenandoah]
1004 wl[,]

1005 w([Penn]

1006 wl[.]

example file, ex2:

1, 1001, 1002:
2, 1003, 1004, 1005, 1006:

However, this also means that it is not possible (without inventing new sensors) to generate
co-locations on words inside the entity. For example, RGF “-1 inc: coloc(w,w)[0,0]” will not return
any (active) features.

15

For co-locations between the words in the target and other words, each word in the target
will conjunct with words outside. For instnace, “-1 inc: coloc(w,w)[-1,0]” generates the following
features.

w[badlander] -w[Jimmy]
w[badlander] -w[Dorsey]
w[in] -w[Shenandoah]
wlin]-w[,]
w[in]-w[Penn]
wlin]-w[.]

Extract features for relations

The parameter for extracting features from relations in a relation/entity corpus is “-R r”.

Extrating features for (binary) relations is a little tricky. Let’s first take a look at possible
relation targets. A (binary) relation is defined by its two entity arguments. In corp2, there are
two entities (“Jimmy Dorsey” and “Shenandoah,Penn.”), which define two relations:

e Ri(“Jimmy Dorsey”, “Shenandoah,Penn.”)
e Ry(“Shenandoah,Penn.”, “Jimmy Dorsey”)

From the relation descriptor of corp2, we also know that the label of Ry is “birthplace” and
R is “irrelevant”.

The order of the relation targets is defined as follows. Suppose there are n entities in a sentence,
and the entities are I, Fo, - -+, By, where I; appears before I; if i < j. If we use R;; to represent
realtion (E;, E;). Then, the order of the relation targets is:

Ri2, Roy1, Ri3, R31, -+, R, Rpa, - - R(n—Z)(n—1)7 R(n—l)(n—2)7 R(n—Z)n? Rn(n—2)7 R(n—l)n7 Rn(n—l)

In order to fully specify positions with respect to these two argument entities, the index system is
changed in the following way.

e 100 : the position of the first argument

e 200 : the position of the second argument

e -1ww : the ww-th position to the left of the first argument
e 1xx : the xx-th position to the right of the first argument

e -2yy : the yy-th position to the left of the second argument
e 277 : the zz-th position to the right of the second argument

Take corp2 as example. When the target relations are R; and Rg, Table 1 and 2 show some
mappings between the location numbers and words.

A window that is defined by two numbers specifies the focus of the RGF. However, if the actual
position of the left window index is to right of the actual position of the right window index, then
no feature will be extracted.

For example, script “w[-101,201)” extracts words from one word before the first argument to
one word after the second argument. If the target relation is R, then

16

‘ location ‘ words

100 Jimmy Dorsey
-102 ,

101 was

200 Shenandoah,Penn.
-201 in

201 not exist

Table 1: R;(“Jimmy Dorsey”, “Shenandoah,Penn.”)

‘ location ‘ words ‘
100 Shenandoah,Penn.
-102 born
101 not exist
200 Jimmy Dorsey
-201 bandleader
201 was

Table 2: Ra(“Shenandoah,Penn.”, “Jimmy Dorsey”)

wbandleader], w[Jimmy], w[Dorsey|, w[was], w[born], w[in], w[Shenandoah], w[,], w[Penn], w|.]

will be extracted. However, if the target relation is Ro, then no feature will be extracted since
the first word before the first argument (i.e. in) is actually after the first word after the second
argument (i.e. was).

If an RGF has no window, the focus is then the whole sentence. For example, script “-1:
Verb&w” extracts all the verbs in this sentence.

Another modification of the script is the use of “mark”. If you put mark before the colon, then
“12” will be added to the lexicon of the feature when the first argument appears before the second
argument and “21” for the other case. For example, “-1 mark inc: t[-101,201]” extracts the following
features for Ry (Note that it can’t extract any feature for Re because of the abovementioned reason.)

£[NN]12, t[NNP]12, t[VBD]12, t[VBN]12, t{NNP]12, t[,]12, t[.]12
and “-1 mark inc: t[-201,101]” extracts the following features for Ry

£[NNJ21, t[NNP]21, t[VBDJ21, t[VBN]21, t[NNP]21, t[;]21, t[.]21

17

